51 lines
1.2 KiB
Markdown
51 lines
1.2 KiB
Markdown
---
|
|
id: 5900f52a1000cf542c51003c
|
|
title: '問題 445: レトラクション A'
|
|
challengeType: 5
|
|
forumTopicId: 302117
|
|
dashedName: problem-445-retractions-a
|
|
---
|
|
|
|
# --description--
|
|
|
|
$n > 1$ のすべての整数について、関数族 $f_{n, a, b}$ は次のように定義されます。
|
|
|
|
整数 $a, b, x$ および $0 \lt a \lt n$, $0 \le b \lt n$, $0 \le x \lt n$ について、$f_{n, a, b}(x) ≡ ax + b\bmod n$
|
|
|
|
$0 \le x \lt n$ のすべてにおいて、$f_{n, a, b}(f_{n, a, b}(x)) \equiv f_{n, a, b}(x)\bmod n$ のとき、$f_{n, a, b}$ をレトラクションと呼ぶことにします。
|
|
|
|
$n$ のレトラクションの個数を $R(n)$ とします。
|
|
|
|
次が与えられます。
|
|
|
|
$$\sum_{k = 1}^{99\\,999} R(\displaystyle\binom{100\\,000}{k}) \equiv 628\\,701\\,600\bmod 1\\,000\\,000\\,007$$
|
|
|
|
$$\sum_{k = 1}^{9\\,999\\,999} R(\displaystyle\binom{10\\,000\\,000}{k})$$ を求め、mod $1\\,000\\,000\\,007$ で答えなさい。
|
|
|
|
# --hints--
|
|
|
|
`retractionsA()` は `659104042` を返す必要があります。
|
|
|
|
```js
|
|
assert.strictEqual(retractionsA(), 659104042);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function retractionsA() {
|
|
|
|
return true;
|
|
}
|
|
|
|
retractionsA();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|