Files
freeCodeCamp/curriculum/challenges/japanese/10-coding-interview-prep/project-euler/problem-467-superinteger.md
2022-04-02 17:46:30 +09:00

1.9 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f5411000cf542c510052 問題 467: 超越整数 5 302142 problem-467-superinteger

--description--

整数 n の数字が別の整数 s の数字の部分列になる場合、整数 s を整数 n の「超越整数」と呼ぶことにします。

例えば、2718281828 は 18828 の超越整数ですが、314159 は 151 の超越整数ではありません。

p(n)n 番目の素数とし、c(n)n 番目の合成数とします。 例えば、p(1) = 2, p(10) = 29, c(1) = 4, c(10) = 18 です。

$$\begin{align} & \{p(i) : i ≥ 1\} = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots \} \\ & \{c(i) : i ≥ 1\} = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, \ldots \} \end{align}$$

\\{p(i)\\} の数字根からなる数列を P^D とすると、次のようになります (C^D\\{c(i)\\} に対して同様に定義されます)。

$$\begin{align} & P^D = \{2, 3, 5, 7, 2, 4, 8, 1, 5, 2, \ldots \} \\ & C^D = \{4, 6, 8, 9, 1, 3, 5, 6, 7, 9, \ldots \} \end{align}$$

P^D の最初の n 個の要素をつなげた整数を P_n とします (C_nC^D に対して同様に定義されます)。

$$\begin{align} & P_{10} = 2\,357\,248\,152 \\ & C_{10} = 4\,689\,135\,679 \end{align}$$

P_nC_n の共通の超越整数である最小の正の整数を、f(n) とします。 例えば、f(10) = 2\\,357\\,246\\,891\\,352\\,679, f(100)\bmod 1\\,000\\,000\\,007 = 771\\,661\\,825 です。

f(10\\,000)\bmod 1\\,000\\,000\\,007 を求めなさい。

--hints--

superinteger()775181359 を返す必要があります。

assert.strictEqual(superinteger(), 775181359);

--seed--

--seed-contents--

function superinteger() {

  return true;
}

superinteger();

--solutions--

// solution required