3.1 KiB
3.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f3ae1000cf542c50fec1 | 問題 66: ディオファントス方程式 | 5 | 302178 | problem-66-diophantine-equation |
--description--
次のような二次のディオファントス方程式を考えます。
x2 – Dy2 = 1
例えば、D=13 のとき、x の最小解は 6492 – 13×1802 = 1 です。
D が平方数のとき、正整数の中に解は存在しないと想定できます。
D = {2, 3, 5, 6, 7} に対する x の最小解を求めると、以下が得られます。
32 – 2×22 = 1
22 – 3×12 = 1
92 – 5×42 = 1
52 – 6×22 = 1
82 – 7×32 = 1
22 – 3×12 = 1
92 – 5×42 = 1
52 – 6×22 = 1
82 – 7×32 = 1
したがって、D ≤ 7 に対する x
の最小解を考えると、D=5 のときに x
が最大になります。
x
が最大になるような 、x
の最小解における値 D (≤ n
) を求めなさい。
--hints--
diophantineEquation(7)
は数値を返す必要があります。
assert(typeof diophantineEquation(7) === 'number');
diophantineEquation(7)
は 5
を返す必要があります。
assert.strictEqual(diophantineEquation(7), 5);
diophantineEquation(100)
は 61
を返す必要があります。
assert.strictEqual(diophantineEquation(100), 61);
diophantineEquation(409)
は 409
を返す必要があります。
assert.strictEqual(diophantineEquation(409), 409);
diophantineEquation(500)
は 421
を返す必要があります。
assert.strictEqual(diophantineEquation(500), 421);
diophantineEquation(1000)
は 661
を返す必要があります。
assert.strictEqual(diophantineEquation(1000), 661);
--seed--
--seed-contents--
function diophantineEquation(n) {
return true;
}
diophantineEquation(7);
--solutions--
function diophantineEquation(n) {
// Based on https://www.mathblog.dk/project-euler-66-diophantine-equation/
function isSolution(D, numerator, denominator) {
return numerator * numerator - BigInt(D) * denominator * denominator === 1n;
}
let result = 0;
let biggestX = 0;
for (let D = 2; D <= n; D++) {
let boundary = Math.floor(Math.sqrt(D));
if (boundary ** 2 === D) {
continue;
}
let m = 0n;
let d = 1n;
let a = BigInt(boundary);
let [numerator, prevNumerator] = [a, 1n];
let [denominator, prevDenominator] = [1n, 0n];
while (!isSolution(D, numerator, denominator)) {
m = d * a - m;
d = (BigInt(D) - m * m) / d;
a = (BigInt(boundary) + m) / d;
[numerator, prevNumerator] = [a * numerator + prevNumerator, numerator];
[denominator, prevDenominator] = [
a * denominator + prevDenominator,
denominator
];
}
if (numerator > biggestX) {
biggestX = numerator;
result = D;
}
}
return result;
}