* fix: clean-up Project Euler 141-160 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: use different notation for consistency * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md Co-authored-by: gikf <60067306+gikf@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
41 lines
753 B
Markdown
41 lines
753 B
Markdown
---
|
|
id: 5900f3fe1000cf542c50ff11
|
|
title: 'Problem 146: Investigating a Prime Pattern'
|
|
challengeType: 5
|
|
forumTopicId: 301775
|
|
dashedName: problem-146-investigating-a-prime-pattern
|
|
---
|
|
|
|
# --description--
|
|
|
|
The smallest positive integer $n$ for which the numbers $n^2 + 1$, $n^2 + 3$, $n^2 + 7$, $n^2 + 9$, $n^2 + 13$, and $n^2 + 27$ are consecutive primes is 10. The sum of all such integers $n$ below one-million is 1242490.
|
|
|
|
What is the sum of all such integers $n$ below 150 million?
|
|
|
|
# --hints--
|
|
|
|
`primePattern()` should return `676333270`.
|
|
|
|
```js
|
|
assert.strictEqual(primePattern(), 676333270);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function primePattern() {
|
|
|
|
return true;
|
|
}
|
|
|
|
primePattern();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|