* fix: clean-up Project Euler 141-160 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: use different notation for consistency * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md Co-authored-by: gikf <60067306+gikf@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.6 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4021000cf542c50ff13 | Problem 149: Searching for a maximum-sum subsequence | 5 | 301778 | problem-149-searching-for-a-maximum-sum-subsequence |
--description--
Looking at the table below, it is easy to verify that the maximum possible sum of adjacent numbers in any direction (horizontal, vertical, diagonal or anti-diagonal) is 16 (= 8 + 7 + 1)
.
$$\begin{array}{|r|r|r|r|} \hline −2 & 5 & 3 & 2 \\ \hline 9 & −6 & 5 & 1 \\ \hline 3 & 2 & 7 & 3 \\ \hline −1 & 8 & −4 & 8 \\ \hline \end{array}$$
Now, let us repeat the search, but on a much larger scale:
First, generate four million pseudo-random numbers using a specific form of what is known as a "Lagged Fibonacci Generator":
For 1 ≤ k ≤ 55
, s_k = (100003 − 200003k + 300007{k}^3) \\ (modulo\\ 1000000) − 500000
.
For 56 ≤ k ≤ 4000000
, s_k = (s_{k − 24} + s_{k − 55} + 1000000) \\ (modulo\\ 1000000) − 500000
.
Thus, s_{10} = −393027
and s_{100} = 86613
.
The terms of s
are then arranged in a 2000×2000 table, using the first 2000 numbers to fill the first row (sequentially), the next 2000 numbers to fill the second row, and so on.
Finally, find the greatest sum of (any number of) adjacent entries in any direction (horizontal, vertical, diagonal or anti-diagonal).
--hints--
maximumSubSequence()
should return 52852124
.
assert.strictEqual(maximumSubSequence(), 52852124);
--seed--
--seed-contents--
function maximumSubSequence() {
return true;
}
maximumSubSequence();
--solutions--
// solution required