Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-149-searching-for-a-maximum-sum-subsequence.md
gikf bfc21e4c40 fix(curriculum): clean-up Project Euler 141-160 (#42750)
* fix: clean-up Project Euler 141-160

* fix: corrections from review

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: use different notation for consistency

* Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md

Co-authored-by: gikf <60067306+gikf@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-14 13:05:12 +02:00

1.6 KiB
Raw Permalink Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4021000cf542c50ff13 Problem 149: Searching for a maximum-sum subsequence 5 301778 problem-149-searching-for-a-maximum-sum-subsequence

--description--

Looking at the table below, it is easy to verify that the maximum possible sum of adjacent numbers in any direction (horizontal, vertical, diagonal or anti-diagonal) is 16 (= 8 + 7 + 1).

$$\begin{array}{|r|r|r|r|} \hline 2 & 5 & 3 & 2 \\ \hline 9 & 6 & 5 & 1 \\ \hline 3 & 2 & 7 & 3 \\ \hline 1 & 8 & 4 & 8 \\ \hline \end{array}$$

Now, let us repeat the search, but on a much larger scale:

First, generate four million pseudo-random numbers using a specific form of what is known as a "Lagged Fibonacci Generator":

For 1 ≤ k ≤ 55, s_k = (100003 200003k + 300007{k}^3) \\ (modulo\\ 1000000) 500000.

For 56 ≤ k ≤ 4000000, s_k = (s_{k 24} + s_{k 55} + 1000000) \\ (modulo\\ 1000000) 500000.

Thus, s_{10} = 393027 and s_{100} = 86613.

The terms of s are then arranged in a 2000×2000 table, using the first 2000 numbers to fill the first row (sequentially), the next 2000 numbers to fill the second row, and so on.

Finally, find the greatest sum of (any number of) adjacent entries in any direction (horizontal, vertical, diagonal or anti-diagonal).

--hints--

maximumSubSequence() should return 52852124.

assert.strictEqual(maximumSubSequence(), 52852124);

--seed--

--seed-contents--

function maximumSubSequence() {

  return true;
}

maximumSubSequence();

--solutions--

// solution required