* fix: clean-up Project Euler 141-160 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: use different notation for consistency * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md Co-authored-by: gikf <60067306+gikf@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.7 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f40c1000cf542c50ff1e | Problem 159: Digital root sums of factorisations | 5 | 301790 | problem-159-digital-root-sums-of-factorisations |
--description--
A composite number can be factored many different ways.
For instance, not including multiplication by one, 24 can be factored in 7 distinct ways:
$$\begin{align} & 24 = 2 \times 2 \times 2 \times 3\\ & 24 = 2 \times 3 \times 4 \\ & 24 = 2 \times 2 \times 6 \\ & 24 = 4 \times 6 \\ & 24 = 3 \times 8 \\ & 24 = 2 \times 12 \\ & 24 = 24 \end{align}$$
Recall that the digital root of a number, in base 10, is found by adding together the digits of that number, and repeating that process until a number arrives at less than 10. Thus the digital root of 467 is 8.
We shall call a Digital Root Sum (DRS) the sum of the digital roots of the individual factors of our number. The chart below demonstrates all of the DRS values for 24.
Factorisation | Digital Root Sum |
---|---|
2x2x2x3 | 9 |
2x3x4 | 9 |
2x2x6 | 10 |
4x6 | 10 |
3x8 | 11 |
2x12 | 5 |
24 | 6 |
The maximum Digital Root Sum of 24 is 11. The function mdrs(n)
gives the maximum Digital Root Sum of n
. So mdrs(24) = 11
.
Find \sum{mdrs(n)}
for 1 < n < 1,000,000
.
--hints--
euler159()
should return 14489159
.
assert.strictEqual(euler159(), 14489159);
--seed--
--seed-contents--
function euler159() {
return true;
}
euler159();
--solutions--
// solution required