Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-171-finding-numbers-for-which-the-sum-of-the-squares-of-the-digits-is-a-square.md
gikf 32fac23a2d fix(curriculum): clean-up Project Euler 161-180 (#42782)
* fix: clean-up Project Euler 161-180

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-12 16:19:03 +02:00

1005 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4181000cf542c50ff2a Problem 171: Finding numbers for which the sum of the squares of the digits is a square 5 301806 problem-171-finding-numbers-for-which-the-sum-of-the-squares-of-the-digits-is-a-square

--description--

For a positive integer n, let f(n) be the sum of the squares of the digits (in base 10) of n, e.g.

$$\begin{align} & f(3) = 3^2 = 9 \\ & f(25) = 2^2 + 5^2 = 4 + 25 = 29 \\ & f(442) = 4^2 + 4^2 + 2^2 = 16 + 16 + 4 = 36 \\ \end{align}$$

Find the last nine digits of the sum of all n, 0 &lt; n &lt; {10}^{20}, such that f(n) is a perfect square.

--hints--

lastDigitsSumOfPerfectSquare() should return 142989277.

assert.strictEqual(lastDigitsSumOfPerfectSquare(), 142989277);

--seed--

--seed-contents--

function lastDigitsSumOfPerfectSquare() {

  return true;
}

lastDigitsSumOfPerfectSquare();

--solutions--

// solution required