* fix: clean-up Project Euler 161-180 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.3 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4201000cf542c50ff33 | Problem 180: Rational zeros of a function of three variables | 5 | 301816 | problem-180-rational-zeros-of-a-function-of-three-variables |
--description--
For any integer n
, consider the three functions
$$\begin{align} & f_{1,n}(x,y,z) = x^{n + 1} + y^{n + 1} − z^{n + 1}\\ & f_{2,n}(x,y,z) = (xy + yz + zx) \times (x^{n - 1} + y^{n - 1} − z^{n - 1})\\ & f_{3,n}(x,y,z) = xyz \times (x^{n - 2} + y^{n - 2} − z^{n - 2}) \end{align}$$
and their combination
$$\begin{align} & f_n(x,y,z) = f_{1,n}(x,y,z) + f_{2,n}(x,y,z) − f_{3,n}(x,y,z) \end{align}$$
We call (x,y,z)
a golden triple of order k
if x
, y
, and z
are all rational numbers of the form \frac{a}{b}
with 0 < a < b ≤ k
and there is (at least) one integer n
, so that f_n(x,y,z) = 0
.
Let s(x,y,z) = x + y + z
.
Let t = \frac{u}{v}
be the sum of all distinct s(x,y,z)
for all golden triples (x,y,z)
of order 35. All the s(x,y,z)
and t
must be in reduced form.
Find u + v
.
--hints--
rationalZeros()
should return 285196020571078980
.
assert.strictEqual(rationalZeros(), 285196020571078980);
--seed--
--seed-contents--
function rationalZeros() {
return true;
}
rationalZeros();
--solutions--
// solution required