Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-188-the-hyperexponentiation-of-a-number.md
gikf 5a52c229f5 fix(curriculum): clean-up Project Euler 181-200 (#42819)
* fix: clean-up Project Euler 181-200

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: missing delimiter

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-15 15:52:14 +02:00

45 lines
898 B
Markdown

---
id: 5900f4291000cf542c50ff3b
title: 'Problem 188: The hyperexponentiation of a number'
challengeType: 5
forumTopicId: 301824
dashedName: problem-188-the-hyperexponentiation-of-a-number
---
# --description--
The hyperexponentiation or tetration of a number $a$ by a positive integer $b$, denoted by $a↑↑b$ or ${}^ba$, is recursively defined by:
$a↑↑1 = a$,
$a↑↑(k+1) = a^{(a↑↑k)}$.
Thus we have e.g. $3↑↑2 = 3^3 = 27$, hence $3↑↑3 = 3^{27} = 7625597484987$ and $3↑↑4$ is roughly ${10}^{3.6383346400240996 \times {10}^{12}}$. Find the last 8 digits of $1777↑↑1855$.
# --hints--
`hyperexponentation()` should return `95962097`.
```js
assert.strictEqual(hyperexponentation(), 95962097);
```
# --seed--
## --seed-contents--
```js
function hyperexponentation() {
return true;
}
hyperexponentation();
```
# --solutions--
```js
// solution required
```