* fix: clean-up Project Euler 201-220 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.8 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4361000cf542c50ff48 | Problem 201: Subsets with a unique sum | 5 | 301841 | problem-201-subsets-with-a-unique-sum |
--description--
For any set A
of numbers, let sum(A)
be the sum of the elements of A
.
Consider the set B = \\{1,3,6,8,10,11\\}
. There are 20 subsets of B
containing three elements, and their sums are:
$$\begin{align} & sum(\{1,3,6\}) = 10 \\ & sum(\{1,3,8\}) = 12 \\ & sum(\{1,3,10\}) = 14 \\ & sum(\{1,3,11\}) = 15 \\ & sum(\{1,6,8\}) = 15 \\ & sum(\{1,6,10\}) = 17 \\ & sum(\{1,6,11\}) = 18 \\ & sum(\{1,8,10\}) = 19 \\ & sum(\{1,8,11\}) = 20 \\ & sum(\{1,10,11\}) = 22 \\ & sum(\{3,6,8\}) = 17 \\ & sum(\{3,6,10\}) = 19 \\ & sum(\{3,6,11\}) = 20 \\ & sum(\{3,8,10\}) = 21 \\ & sum(\{3,8,11\}) = 22 \\ & sum(\{3,10,11\}) = 24 \\ & sum(\{6,8,10\}) = 24 \\ & sum(\{6,8,11\}) = 25 \\ & sum(\{6,10,11\}) = 27 \\ & sum(\{8,10,11\}) = 29 \end{align}$$
Some of these sums occur more than once, others are unique. For a set A
, let U(A,k)
be the set of unique sums of $k$-element subsets of A
, in our example we find U(B,3) = \\{10,12,14,18,21,25,27,29\\}
and sum(U(B,3)) = 156
.
Now consider the $100$-element set S = \\{1^2, 2^2, \ldots , {100}^2\\}
. S
has 100\\,891\\,344\\,545\\,564\\,193\\,334\\,812\\,497\\,256\\;
$50$-element subsets.
Determine the sum of all integers which are the sum of exactly one of the $50$-element subsets of S
, i.e. find sum(U(S,50))
.
--hints--
uniqueSubsetsSum()
should return 115039000
.
assert.strictEqual(uniqueSubsetsSum(), 115039000);
--seed--
--seed-contents--
function uniqueSubsetsSum() {
return true;
}
uniqueSubsetsSum();
--solutions--
// solution required