* fix: clean-up Project Euler 201-220 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.4 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f43c1000cf542c50ff4e | Problem 207: Integer partition equations | 5 | 301848 | problem-207-integer-partition-equations |
--description--
For some positive integers k
, there exists an integer partition of the form 4^t = 2^t + k
,
where 4^t
, 2^t
, and k
are all positive integers and t
is a real number.
The first two such partitions are 4^1 = 2^1 + 2
and 4^{1.584\\,962\\,5\ldots} = 2^{1.584\\,962\\,5\ldots} + 6
.
Partitions where t
is also an integer are called perfect. For any m ≥ 1
let P(m)
be the proportion of such partitions that are perfect with k ≤ m
.
Thus P(6) = \frac{1}{2}
.
In the following table are listed some values of P(m)
$$\begin{align} & P(5) = \frac{1}{1} \\ & P(10) = \frac{1}{2} \\ & P(15) = \frac{2}{3} \\ & P(20) = \frac{1}{2} \\ & P(25) = \frac{1}{2} \\ & P(30) = \frac{2}{5} \\ & \ldots \\ & P(180) = \frac{1}{4} \\ & P(185) = \frac{3}{13} \end{align}$$
Find the smallest m
for which P(m) < \frac{1}{12\\,345}
--hints--
integerPartitionEquations()
should return 44043947822
.
assert.strictEqual(integerPartitionEquations(), 44043947822);
--seed--
--seed-contents--
function integerPartitionEquations() {
return true;
}
integerPartitionEquations();
--solutions--
// solution required