* fix: clean-up Project Euler 201-220 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4421000cf542c50ff55 | Problem 214: Totient Chains | 5 | 301856 | problem-214-totient-chains |
--description--
Let φ
be Euler's totient function, i.e. for a natural number n
, φ(n)
is the number of k
, 1 ≤ k ≤ n
, for which gcd(k,n) = 1
.
By iterating φ
, each positive integer generates a decreasing chain of numbers ending in 1. E.g. if we start with 5 the sequence 5,4,2,1 is generated. Here is a listing of all chains with length 4:
$$\begin{align} 5,4,2,1 & \\ 7,6,2,1 & \\ 8,4,2,1 & \\ 9,6,2,1 & \\ 10,4,2,1 & \\ 12,4,2,1 & \\ 14,6,2,1 & \\ 18,6,2,1 & \end{align}$$
Only two of these chains start with a prime, their sum is 12.
What is the sum of all primes less than 40\\,000\\,000
which generate a chain of length 25?
--hints--
totientChains()
should return 1677366278943
.
assert.strictEqual(totientChains(), 1677366278943);
--seed--
--seed-contents--
function totientChains() {
return true;
}
totientChains();
--solutions--
// solution required