Files
gikf eef1805fe6 fix(curriculum): clean-up Project Euler 201-220 (#42826)
* fix: clean-up Project Euler 201-220

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-15 09:20:31 +02:00

1.1 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4421000cf542c50ff55 Problem 214: Totient Chains 5 301856 problem-214-totient-chains

--description--

Let φ be Euler's totient function, i.e. for a natural number n, φ(n) is the number of k, 1 ≤ k ≤ n, for which gcd(k,n) = 1.

By iterating φ, each positive integer generates a decreasing chain of numbers ending in 1. E.g. if we start with 5 the sequence 5,4,2,1 is generated. Here is a listing of all chains with length 4:

$$\begin{align} 5,4,2,1 & \\ 7,6,2,1 & \\ 8,4,2,1 & \\ 9,6,2,1 & \\ 10,4,2,1 & \\ 12,4,2,1 & \\ 14,6,2,1 & \\ 18,6,2,1 & \end{align}$$

Only two of these chains start with a prime, their sum is 12.

What is the sum of all primes less than 40\\,000\\,000 which generate a chain of length 25?

--hints--

totientChains() should return 1677366278943.

assert.strictEqual(totientChains(), 1677366278943);

--seed--

--seed-contents--

function totientChains() {

  return true;
}

totientChains();

--solutions--

// solution required