Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-216-investigating-the-primality-of-numbers-of-the-form-2n2-1.md
gikf eef1805fe6 fix(curriculum): clean-up Project Euler 201-220 (#42826)
* fix: clean-up Project Euler 201-220

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-15 09:20:31 +02:00

887 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4451000cf542c50ff57 Problem 216: Investigating the primality of numbers of the form 2n2-1 5 301858 problem-216-investigating-the-primality-of-numbers-of-the-form-2n2-1

--description--

Consider numbers t(n) of the form t(n) = 2n^2 - 1 with n > 1.

The first such numbers are 7, 17, 31, 49, 71, 97, 127 and 161.

It turns out that only 49 = 7 \times 7 and 161 = 7 \times 23 are not prime.

For n ≤ 10000 there are 2202 numbers t(n) that are prime.

How many numbers t(n) are prime for n ≤ 50\\,000\\,000?

--hints--

primalityOfNumbers() should return 5437849.

assert.strictEqual(primalityOfNumbers(), 5437849);

--seed--

--seed-contents--

function primalityOfNumbers() {

  return true;
}

primalityOfNumbers();

--solutions--

// solution required