Files
gikf a9418a1fe9 fix(curriculum): clean-up Project Euler 221-240 (#42839)
* fix: clean-up Project Euler 221-240

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-15 14:26:34 +02:00

73 lines
2.0 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f4531000cf542c50ff65
title: 'Problem 230: Fibonacci Words'
challengeType: 5
forumTopicId: 301874
dashedName: problem-230-fibonacci-words
---
# --description--
For any two strings of digits, $A$ and $B$, we define $F_{A,B}$ to be the sequence ($A, B, AB, BAB, ABBAB, \ldots$) in which each term is the concatenation of the previous two.
Further, we define $D_{A,B}(n)$ to be the $n^{\text{th}}$ digit in the first term of $F_{A,B}$ that contains at least $n$ digits.
Example:
Let $A = 1\\,415\\,926\\,535$, $B = 8\\,979\\,323\\,846$. We wish to find $D_{A,B}(35)$, say.
The first few terms of $F_{A,B}$ are:
$$\begin{align}
& 1\\,415\\,926\\,535 \\\\
& 8\\,979\\,323\\,846 \\\\
& 14\\,159\\,265\\,358\\,979\\,323\\,846 \\\\
& 897\\,932\\,384\\,614\\,159\\,265\\,358\\,979\\,323\\,846 \\\\
& 14\\,159\\,265\\,358\\,979\\,323\\,846\\,897\\,932\\,384\\,614\\,15\color{red}{9}\\,265\\,358\\,979\\,323\\,846
\end{align}$$
Then $D_{A,B}(35)$ is the ${35}^{\text{th}}$ digit in the fifth term, which is 9.
Now we use for $A$ the first 100 digits of $π$ behind the decimal point:
$$\begin{align}
& 14\\,159\\,265\\,358\\,979\\,323\\,846\\,264\\,338\\,327\\,950\\,288\\,419\\,716\\,939\\,937\\,510 \\\\
& 58\\,209\\,749\\,445\\,923\\,078\\,164\\,062\\,862\\,089\\,986\\,280\\,348\\,253\\,421\\,170\\,679
\end{align}$$
and for $B$ the next hundred digits:
$$\begin{align}
& 82\\,148\\,086\\,513\\,282\\,306\\,647\\,093\\,844\\,609\\,550\\,582\\,231\\,725\\,359\\,408\\,128 \\\\
& 48\\,111\\,745\\,028\\,410\\,270\\,193\\,852\\,110\\,555\\,964\\,462\\,294\\,895\\,493\\,038\\,196
\end{align}$$
Find $\sum_{n = 0, 1, \ldots, 17} {10}^n × D_{A,B}((127 + 19n) × 7^n)$.
# --hints--
`fibonacciWords()` should return `850481152593119200`.
```js
assert.strictEqual(fibonacciWords(), 850481152593119200);
```
# --seed--
## --seed-contents--
```js
function fibonacciWords() {
return true;
}
fibonacciWords();
```
# --solutions--
```js
// solution required
```