* fix: clean-up Project Euler 221-240 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
73 lines
2.0 KiB
Markdown
73 lines
2.0 KiB
Markdown
---
|
||
id: 5900f4531000cf542c50ff65
|
||
title: 'Problem 230: Fibonacci Words'
|
||
challengeType: 5
|
||
forumTopicId: 301874
|
||
dashedName: problem-230-fibonacci-words
|
||
---
|
||
|
||
# --description--
|
||
|
||
For any two strings of digits, $A$ and $B$, we define $F_{A,B}$ to be the sequence ($A, B, AB, BAB, ABBAB, \ldots$) in which each term is the concatenation of the previous two.
|
||
|
||
Further, we define $D_{A,B}(n)$ to be the $n^{\text{th}}$ digit in the first term of $F_{A,B}$ that contains at least $n$ digits.
|
||
|
||
Example:
|
||
|
||
Let $A = 1\\,415\\,926\\,535$, $B = 8\\,979\\,323\\,846$. We wish to find $D_{A,B}(35)$, say.
|
||
|
||
The first few terms of $F_{A,B}$ are:
|
||
|
||
$$\begin{align}
|
||
& 1\\,415\\,926\\,535 \\\\
|
||
& 8\\,979\\,323\\,846 \\\\
|
||
& 14\\,159\\,265\\,358\\,979\\,323\\,846 \\\\
|
||
& 897\\,932\\,384\\,614\\,159\\,265\\,358\\,979\\,323\\,846 \\\\
|
||
& 14\\,159\\,265\\,358\\,979\\,323\\,846\\,897\\,932\\,384\\,614\\,15\color{red}{9}\\,265\\,358\\,979\\,323\\,846
|
||
\end{align}$$
|
||
|
||
Then $D_{A,B}(35)$ is the ${35}^{\text{th}}$ digit in the fifth term, which is 9.
|
||
|
||
Now we use for $A$ the first 100 digits of $π$ behind the decimal point:
|
||
|
||
$$\begin{align}
|
||
& 14\\,159\\,265\\,358\\,979\\,323\\,846\\,264\\,338\\,327\\,950\\,288\\,419\\,716\\,939\\,937\\,510 \\\\
|
||
& 58\\,209\\,749\\,445\\,923\\,078\\,164\\,062\\,862\\,089\\,986\\,280\\,348\\,253\\,421\\,170\\,679
|
||
\end{align}$$
|
||
|
||
and for $B$ the next hundred digits:
|
||
|
||
$$\begin{align}
|
||
& 82\\,148\\,086\\,513\\,282\\,306\\,647\\,093\\,844\\,609\\,550\\,582\\,231\\,725\\,359\\,408\\,128 \\\\
|
||
& 48\\,111\\,745\\,028\\,410\\,270\\,193\\,852\\,110\\,555\\,964\\,462\\,294\\,895\\,493\\,038\\,196
|
||
\end{align}$$
|
||
|
||
Find $\sum_{n = 0, 1, \ldots, 17} {10}^n × D_{A,B}((127 + 19n) × 7^n)$.
|
||
|
||
# --hints--
|
||
|
||
`fibonacciWords()` should return `850481152593119200`.
|
||
|
||
```js
|
||
assert.strictEqual(fibonacciWords(), 850481152593119200);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function fibonacciWords() {
|
||
|
||
return true;
|
||
}
|
||
|
||
fibonacciWords();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|