Files
gikf 67de105117 fix(curriculum): clean-up Project Euler 241-260 (#42879)
* fix: clean-up Project Euler 241-260

* fix: typo

* Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-255-rounded-square-roots.md

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-16 12:21:45 +02:00

2.4 KiB
Raw Permalink Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4601000cf542c50ff72 Problem 244: Sliders 5 301891 problem-244-sliders

--description--

You probably know the game Fifteen Puzzle. Here, instead of numbered tiles, we have seven red tiles and eight blue tiles.

A move is denoted by the uppercase initial of the direction (Left, Right, Up, Down) in which the tile is slid, e.g. starting from configuration (S), by the sequence LULUR we reach the configuration (E):

(S) configuration S, (E) configuration E

For each path, its checksum is calculated by (pseudocode):

$$\begin{align} & \text{checksum} = 0 \\ & \text{checksum} = (\text{checksum} × 243 + m_1) \; \text{mod} \; 100\,000\,007 \\ & \text{checksum} = (\text{checksum} × 243 + m_2) \; \text{mod} \; 100\,000\,007 \\ & \ldots \\ & \text{checksum} = (\text{checksum} × 243 + m_n) \; \text{mod} \; 100\,000\,007 \end{align}$$

where m_k is the ASCII value of the k^{\text{th}} letter in the move sequence and the ASCII values for the moves are:

$$\begin{array}{|c|c|} \hline L & 76 \\ \hline R & 82 \\ \hline U & 85 \\ \hline D & 68 \\ \hline \end{array}$$

For the sequence LULUR given above, the checksum would be 19761398. Now, starting from configuration (S), find all shortest ways to reach configuration (T).

(S) configuration S, (T) configuration T

What is the sum of all checksums for the paths having the minimal length?

--hints--

sliders() should return 96356848.

assert.strictEqual(sliders(), 96356848);

--seed--

--seed-contents--

function sliders() {

  return true;
}

sliders();

--solutions--

// solution required