Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-278-linear-combinations-of-semiprimes.md
gikf f93acf28a6 fix(curriculum): clean-up Project Euler 261-280 (#42905)
* fix: clean-up Project Euler 261-280

* fix: typo

* fix: typo

* fix: typo
2021-07-24 09:09:54 +02:00

45 lines
1.3 KiB
Markdown

---
id: 5900f4831000cf542c50ff95
title: 'Problem 278: Linear Combinations of Semiprimes'
challengeType: 5
forumTopicId: 301928
dashedName: problem-278-linear-combinations-of-semiprimes
---
# --description--
Given the values of integers $1 < a_1 < a_2 < \ldots < a_n$, consider the linear combination $q_1a_1 + q_2a_2 + \ldots + q_na_n = b$, using only integer values $q_k ≥ 0$.
Note that for a given set of $a_k$, it may be that not all values of $b$ are possible. For instance, if $a_1 = 5$ and $a_2 = 7$, there are no $q_1 ≥ 0$ and $q_2 ≥ 0$ such that $b$ could be 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 or 23.
In fact, 23 is the largest impossible value of $b$ for $a_1 = 5$ and $a_2 = 7$. We therefore call $f(5, 7) = 23$. Similarly, it can be shown that $f(6, 10, 15)=29$ and $f(14, 22, 77) = 195$.
Find $\sum f(pq,pr,qr)$, where $p$, $q$ and $r$ are prime numbers and $p < q < r < 5000$.
# --hints--
`linearCombinationOfSemiprimes()` should return `1228215747273908500`.
```js
assert.strictEqual(linearCombinationOfSemiprimes(), 1228215747273908500);
```
# --seed--
## --seed-contents--
```js
function linearCombinationOfSemiprimes() {
return true;
}
linearCombinationOfSemiprimes();
```
# --solutions--
```js
// solution required
```