Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-311-biclinic-integral-quadrilaterals.md
gikf 32dbe23f5e fix(curriculum): clean-up Project Euler 301-320 (#42926)
* fix: clean-up Project Euler 301-320

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-21 17:59:56 +02:00

1.4 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4a31000cf542c50ffb6 Problem 311: Biclinic Integral Quadrilaterals 5 301967 problem-311-biclinic-integral-quadrilaterals

--description--

ABCD is a convex, integer sided quadrilateral with 1 ≤ AB &lt; BC &lt; CD &lt; AD.

BD has integer length. O is the midpoint of BD. AO has integer length.

We'll call ABCD a biclinic integral quadrilateral if AO = CO ≤ BO = DO.

For example, the following quadrilateral is a biclinic integral quadrilateral: AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23.

quadrilateral ABCD, with point O, an midpoint of BD

Let B(N) be the number of distinct biclinic integral quadrilaterals ABCD that satisfy {AB}^2 + {BC}^2 + {CD}^2 + {AD}^2 ≤ N. We can verify that B(10\\,000) = 49 and B(1\\,000\\,000) = 38239.

Find B(10\\,000\\,000\\,000).

--hints--

biclinicIntegralQuadrilaterals() should return 2466018557.

assert.strictEqual(biclinicIntegralQuadrilaterals(), 2466018557);

--seed--

--seed-contents--

function biclinicIntegralQuadrilaterals() {

  return true;
}

biclinicIntegralQuadrilaterals();

--solutions--

// solution required