* fix: clean-up Project Euler 301-320 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
49 lines
1.0 KiB
Markdown
49 lines
1.0 KiB
Markdown
---
|
|
id: 5900f4ab1000cf542c50ffbe
|
|
title: 'Problem 319: Bounded Sequences'
|
|
challengeType: 5
|
|
forumTopicId: 301975
|
|
dashedName: problem-319-bounded-sequences
|
|
---
|
|
|
|
# --description--
|
|
|
|
Let $x_1, x_2, \ldots, x_n$ be a sequence of length $n$ such that:
|
|
|
|
- $x_1 = 2$
|
|
- for all $1 < i ≤ n : x_{i - 1} < x_i$
|
|
- for all $i$ and $j$ with $1 ≤ i, j ≤ n : {(x_i)}^j < {(x_j + 1)}^i$
|
|
|
|
There are only five such sequences of length 2, namely: {2,4}, {2,5}, {2,6}, {2,7} and {2,8}. There are 293 such sequences of length 5; three examples are given below: {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}.
|
|
|
|
Let $t(n)$ denote the number of such sequences of length $n$. You are given that $t(10) = 86195$ and $t(20) = 5227991891$.
|
|
|
|
Find $t({10}^{10})$ and give your answer modulo $10^9$.
|
|
|
|
# --hints--
|
|
|
|
`boundedSequences()` should return `268457129`.
|
|
|
|
```js
|
|
assert.strictEqual(boundedSequences(), 268457129);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function boundedSequences() {
|
|
|
|
return true;
|
|
}
|
|
|
|
boundedSequences();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|