Files
gikf 1af6e7aa5a fix(curriculum): clean-up Project Euler 321-340 (#42988)
* fix: clean-up Project Euler 321-340

* fix: typo

* fix: corrections from review

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-29 11:59:06 -07:00

974 B
Raw Permalink Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4b11000cf542c50ffc3 Problem 324: Building a tower 5 301981 problem-324-building-a-tower

--description--

Let f(n) represent the number of ways one can fill a 3×3×n tower with blocks of 2×1×1. You're allowed to rotate the blocks in any way you like; however, rotations, reflections etc of the tower itself are counted as distinct.

For example (with q = 100\\,000\\,007):

$$\begin{align} & f(2) = 229, \\ & f(4) = 117\,805, \\ & f(10)\bmod q = 96\,149\,360, \\ & f({10}^3)\bmod q = 24\,806\,056, \\ & f({10}^6)\bmod q = 30\,808\,124. \end{align}$$

Find f({10}^{10000})\bmod 100\\,000\\,007.

--hints--

buildingTower() should return 96972774.

assert.strictEqual(buildingTower(), 96972774);

--seed--

--seed-contents--

function buildingTower() {

  return true;
}

buildingTower();

--solutions--

// solution required