* fix: clean-up Project Euler 321-340 * fix: typo * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
974 B
974 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4b11000cf542c50ffc3 | Problem 324: Building a tower | 5 | 301981 | problem-324-building-a-tower |
--description--
Let f(n)
represent the number of ways one can fill a 3×3×n
tower with blocks of 2×1×1
. You're allowed to rotate the blocks in any way you like; however, rotations, reflections etc of the tower itself are counted as distinct.
For example (with q = 100\\,000\\,007
):
$$\begin{align} & f(2) = 229, \\ & f(4) = 117\,805, \\ & f(10)\bmod q = 96\,149\,360, \\ & f({10}^3)\bmod q = 24\,806\,056, \\ & f({10}^6)\bmod q = 30\,808\,124. \end{align}$$
Find f({10}^{10000})\bmod 100\\,000\\,007
.
--hints--
buildingTower()
should return 96972774
.
assert.strictEqual(buildingTower(), 96972774);
--seed--
--seed-contents--
function buildingTower() {
return true;
}
buildingTower();
--solutions--
// solution required