* fix: clean-up Project Euler 321-340 * fix: typo * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
53 lines
995 B
Markdown
53 lines
995 B
Markdown
---
|
|
id: 5900f4be1000cf542c50ffd0
|
|
title: 'Problem 337: Totient Stairstep Sequences'
|
|
challengeType: 5
|
|
forumTopicId: 301995
|
|
dashedName: problem-337-totient-stairstep-sequences
|
|
---
|
|
|
|
# --description--
|
|
|
|
Let $\\{a_1, a_2, \ldots, a_n\\}$ be an integer sequence of length $n$ such that:
|
|
|
|
- $a_1 = 6$
|
|
- for all $1 ≤ i < n$ : $φ(a_i) < φ(a_{i + 1}) < a_i < a_{i + 1}$
|
|
|
|
$φ$ denotes Euler's totient function.
|
|
|
|
Let $S(N)$ be the number of such sequences with $a_n ≤ N$.
|
|
|
|
For example, $S(10) = 4$: {6}, {6, 8}, {6, 8, 9} and {6, 10}.
|
|
|
|
We can verify that $S(100) = 482\\,073\\,668$ and $S(10\\,000)\bmod {10}^8 = 73\\,808\\,307$.
|
|
|
|
Find $S(20\\,000\\,000)\bmod {10}^8$.
|
|
|
|
|
|
# --hints--
|
|
|
|
`totientStairstepSequences()` should return `85068035`.
|
|
|
|
```js
|
|
assert.strictEqual(totientStairstepSequences(), 85068035);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function totientStairstepSequences() {
|
|
|
|
return true;
|
|
}
|
|
|
|
totientStairstepSequences();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|