Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-347-largest-integer-divisible-by-two-primes.md
gikf c18554dd44 fix(curriculum): clean-up Project Euler 341-360 (#42998)
* fix: clean-up Project Euler 341-360

* fix: improve wording

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-29 19:14:22 +02:00

49 lines
1.2 KiB
Markdown

---
id: 5900f4c81000cf542c50ffd9
title: 'Problem 347: Largest integer divisible by two primes'
challengeType: 5
forumTopicId: 302006
dashedName: problem-347-largest-integer-divisible-by-two-primes
---
# --description--
The largest integer $≤ 100$ that is only divisible by both the primes 2 and 3 is 96, as $96 = 32 \times 3 = 2^5 \times 3$.
For two distinct primes $p$ and $q$ let $M(p, q, N)$ be the largest positive integer $≤ N$ only divisible by both $p$ and $q$ and $M(p, q, N)=0$ if such a positive integer does not exist.
E.g. $M(2, 3, 100) = 96$.
$M(3, 5, 100) = 75$ and not 90 because 90 is divisible by 2, 3 and 5. Also $M(2, 73, 100) = 0$ because there does not exist a positive integer $≤ 100$ that is divisible by both 2 and 73.
Let $S(N)$ be the sum of all distinct $M(p, q, N)$. $S(100)=2262$.
Find $S(10\\,000\\,000)$.
# --hints--
`integerDivisibleByTwoPrimes()` should return `11109800204052`.
```js
assert.strictEqual(integerDivisibleByTwoPrimes(), 11109800204052);
```
# --seed--
## --seed-contents--
```js
function integerDivisibleByTwoPrimes() {
return true;
}
integerDivisibleByTwoPrimes();
```
# --solutions--
```js
// solution required
```