* fix: clean-up Project Euler 341-360 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
66 lines
1.5 KiB
Markdown
66 lines
1.5 KiB
Markdown
---
|
||
id: 5900f4d21000cf542c50ffe5
|
||
title: 'Problem 358: Cyclic numbers'
|
||
challengeType: 5
|
||
forumTopicId: 302018
|
||
dashedName: problem-358-cyclic-numbers
|
||
---
|
||
|
||
# --description--
|
||
|
||
A cyclic number with $n$ digits has a very interesting property:
|
||
|
||
When it is multiplied by 1, 2, 3, 4, ... $n$, all the products have exactly the same digits, in the same order, but rotated in a circular fashion!
|
||
|
||
The smallest cyclic number is the 6-digit number 142857:
|
||
|
||
$$\begin{align}
|
||
& 142857 × 1 = 142857 \\\\
|
||
& 142857 × 2 = 285714 \\\\
|
||
& 142857 × 3 = 428571 \\\\
|
||
& 142857 × 4 = 571428 \\\\
|
||
& 142857 × 5 = 714285 \\\\
|
||
& 142857 × 6 = 857142
|
||
\end{align}$$
|
||
|
||
The next cyclic number is 0588235294117647 with 16 digits:
|
||
|
||
$$\begin{align}
|
||
& 0588235294117647 × 1 = 0588235294117647 \\\\
|
||
& 0588235294117647 × 2 = 1176470588235294 \\\\
|
||
& 0588235294117647 × 3 = 1764705882352941 \\\\
|
||
& \ldots \\\\
|
||
& 0588235294117647 × 16 = 9411764705882352
|
||
\end{align}$$
|
||
|
||
Note that for cyclic numbers, leading zeros are important.
|
||
|
||
There is only one cyclic number for which, the eleven leftmost digits are 00000000137 and the five rightmost digits are 56789 (i.e., it has the form $00000000137\ldots56789$ with an unknown number of digits in the middle). Find the sum of all its digits.
|
||
|
||
# --hints--
|
||
|
||
`cyclicNumbers()` should return `3284144505`.
|
||
|
||
```js
|
||
assert.strictEqual(cyclicNumbers(), 3284144505);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function cyclicNumbers() {
|
||
|
||
return true;
|
||
}
|
||
|
||
cyclicNumbers();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|