* fix: clean-up Project Euler 361-380 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: remove unnecessary paragraph * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.5 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4dd1000cf542c50ffef | Problem 368: A Kempner-like series | 5 | 302029 | problem-368-a-kempner-like-series |
--description--
The harmonic series 1 + \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \ldots
is well known to be divergent.
If we however omit from this series every term where the denominator has a 9 in it, the series remarkably enough converges to approximately 22.9206766193. This modified harmonic series is called the Kempner series.
Let us now consider another modified harmonic series by omitting from the harmonic series every term where the denominator has 3 or more equal consecutive digits. One can verify that out of the first 1200 terms of the harmonic series, only 20 terms will be omitted.
These 20 omitted terms are:
$$\dfrac{1}{111}, \dfrac{1}{222}, \dfrac{1}{333}, \dfrac{1}{444}, \dfrac{1}{555}, \dfrac{1}{666}, \dfrac{1}{777}, \dfrac{1}{888}, \dfrac{1}{999}, \dfrac{1}{1000}, \dfrac{1}{1110}, \\ \dfrac{1}{1111}, \dfrac{1}{1112}, \dfrac{1}{1113}, \dfrac{1}{1114}, \dfrac{1}{1115}, \dfrac{1}{1116}, \dfrac{1}{1117}, \dfrac{1}{1118}, \dfrac{1}{1119}$$
This series converges as well.
Find the value the series converges to. Give your answer rounded to 10 digits behind the decimal point.
--hints--
kempnerLikeSeries()
should return 253.6135092068
.
assert.strictEqual(kempnerLikeSeries(), 253.6135092068);
--seed--
--seed-contents--
function kempnerLikeSeries() {
return true;
}
kempnerLikeSeries();
--solutions--
// solution required