Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-379-least-common-multiple-count.md
gikf 7d9496e52c fix(curriculum): clean-up Project Euler 361-380 (#43002)
* fix: clean-up Project Euler 361-380

* fix: improve wording

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: remove unnecessary paragraph

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-29 12:48:17 -07:00

45 lines
841 B
Markdown

---
id: 5900f4e81000cf542c50fffa
title: 'Problem 379: Least common multiple count'
challengeType: 5
forumTopicId: 302041
dashedName: problem-379-least-common-multiple-count
---
# --description--
Let $f(n)$ be the number of couples ($x$, $y$) with $x$ and $y$ positive integers, $x ≤ y$ and the least common multiple of $x$ and $y$ equal to $n$.
Let $g$ be the summatory function of $f$, i.e.: $g(n) = \sum f(i)$ for $1 ≤ i ≤ n$.
You are given that $g({10}^6) = 37\\,429\\,395$.
Find $g({10}^{12})$.
# --hints--
`leastCommonMultipleCount()` should return `132314136838185`.
```js
assert.strictEqual(leastCommonMultipleCount(), 132314136838185);
```
# --seed--
## --seed-contents--
```js
function leastCommonMultipleCount() {
return true;
}
leastCommonMultipleCount();
```
# --solutions--
```js
// solution required
```