1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f50c1000cf542c51001e | Problem 415: Titanic sets | 5 | 302084 | problem-415-titanic-sets |
--description--
A set of lattice points S
is called a titanic set if there exists a line passing through exactly two points in S
.
An example of a titanic set is S = \\{(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (1, 0)\\}
, where the line passing through (0, 1) and (2, 0) does not pass through any other point in S
.
On the other hand, the set {(0, 0), (1, 1), (2, 2), (4, 4)} is not a titanic set since the line passing through any two points in the set also passes through the other two.
For any positive integer N
, let T(N)
be the number of titanic sets S
whose every point (x
, y
) satisfies 0 ≤ x
, y ≤ N
. It can be verified that T(1) = 11
, T(2) = 494
, T(4) = 33\\,554\\,178
, T(111)\bmod {10}^8 = 13\\,500\\,401
and T({10}^5)\bmod {10}^8 = 63\\,259\\,062
.
Find T({10}^{11})\bmod {10}^8
.
--hints--
titanicSets()
should return 55859742
.
assert.strictEqual(titanicSets(), 55859742);
--seed--
--seed-contents--
function titanicSets() {
return true;
}
titanicSets();
--solutions--
// solution required