51 lines
998 B
Markdown
51 lines
998 B
Markdown
---
|
||
id: 5900f5131000cf542c510024
|
||
title: 'Problem 421: Prime factors of n15+1'
|
||
challengeType: 5
|
||
forumTopicId: 302091
|
||
dashedName: problem-421-prime-factors-of-n151
|
||
---
|
||
|
||
# --description--
|
||
|
||
Numbers of the form $n^{15} + 1$ are composite for every integer $n > 1$.
|
||
|
||
For positive integers $n$ and $m$ let $s(n, m)$ be defined as the sum of the distinct prime factors of $n^{15} + 1$ not exceeding $m$.
|
||
|
||
E.g. $2^{15} + 1 = 3 × 3 × 11 × 331$.
|
||
|
||
So $s(2, 10) = 3$ and $s(2, 1000) = 3 + 11 + 331 = 345$.
|
||
|
||
Also ${10}^{15} + 1 = 7 × 11 × 13 × 211 × 241 × 2161 × 9091$.
|
||
|
||
So $s(10, 100) = 31$ and $s(10, 1000) = 483$.
|
||
|
||
Find $\sum s(n, {10}^8)$ for $1 ≤ n ≤ {10}^{11}$.
|
||
|
||
# --hints--
|
||
|
||
`primeFactorsOfN15Plus1()` should return `2304215802083466200`.
|
||
|
||
```js
|
||
assert.strictEqual(primeFactorsOfN15Plus1(), 2304215802083466200);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function primeFactorsOfN15Plus1() {
|
||
|
||
return true;
|
||
}
|
||
|
||
primeFactorsOfN15Plus1();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|