1.5 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5141000cf542c510027 | Problem 423: Consecutive die throws | 5 | 302093 | problem-423-consecutive-die-throws |
--description--
Let n
be a positive integer.
A 6-sided die is thrown n
times. Let c
be the number of pairs of consecutive throws that give the same value.
For example, if n = 7
and the values of the die throws are (1, 1, 5, 6, 6, 6, 3), then the following pairs of consecutive throws give the same value:
$$\begin{align} & (\underline{1}, \underline{1}, 5, 6, 6, 6, 3) \\ & (1, 1, 5, \underline{6}, \underline{6}, 6, 3) \\ & (1, 1, 5, 6, \underline{6}, \underline{6}, 3) \end{align}$$
Therefore, c = 3
for (1, 1, 5, 6, 6, 6, 3).
Define C(n)
as the number of outcomes of throwing a 6-sided die n
times such that c
does not exceed π(n)
.1
For example, C(3) = 216
, C(4) = 1290
, C(11) = 361\\,912\\,500
and C(24) = 4\\,727\\,547\\,363\\,281\\,250\\,000
.
Define S(L)
as \sum C(n)
for 1 ≤ n ≤ L
.
For example, S(50)\bmod 1\\,000\\,000\\,007 = 832\\,833\\,871
.
Find S(50\\,000\\,000)\bmod 1\\,000\\,000\\,007
.
1 π
denotes the prime-counting function, i.e. π(n)
is the number of primes ≤ n
.
--hints--
consecutiveDieThrows()
should return 653972374
.
assert.strictEqual(consecutiveDieThrows(), 653972374);
--seed--
--seed-contents--
function consecutiveDieThrows() {
return true;
}
consecutiveDieThrows();
--solutions--
// solution required