* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
974 B
974 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5271000cf542c51003a | Problem 443: GCD sequence | 5 | 302115 | problem-443-gcd-sequence |
--description--
Let g(n)
be a sequence defined as follows:
$$\begin{align} & g(4) = 13, \\ & g(n) = g(n-1) + gcd(n, g(n - 1)) \text{ for } n > 4. \end{align}$$
The first few values are:
$$\begin{array}{l} n & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & \ldots \\ g(n) & 13 & 14 & 16 & 17 & 18 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 51 & 54 & 55 & 60 & \ldots \end{array}$$
You are given that g(1\\,000) = 2\\,524
and g(1\\,000\\,000) = 2\\,624\\,152
.
Find g({10}^{15})
.
--hints--
gcdSequence()
should return 2744233049300770
.
assert.strictEqual(gcdSequence(), 2744233049300770);
--seed--
--seed-contents--
function gcdSequence() {
return true;
}
gcdSequence();
--solutions--
// solution required