Files
gikf a2b2ef3f75 fix(curriculum): clean-up Project Euler 441-460 (#43068)
* fix: clean-up Project Euler 441-460

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-30 08:20:31 -07:00

51 lines
1.0 KiB
Markdown

---
id: 5900f52a1000cf542c51003c
title: 'Problem 445: Retractions A'
challengeType: 5
forumTopicId: 302117
dashedName: problem-445-retractions-a
---
# --description--
For every integer $n > 1$, the family of functions $f_{n, a, b}$ is defined by:
$f_{n, a, b}(x) ≡ ax + b\bmod n$ for $a, b, x$ integer and $0 \lt a \lt n$, $0 \le b \lt n$, $0 \le x \lt n$.
We will call $f_{n, a, b}$ a retraction if $f_{n, a, b}(f_{n, a, b}(x)) \equiv f_{n, a, b}(x)\bmod n$ for every $0 \le x \lt n$.
Let $R(n)$ be the number of retractions for $n$.
You are given that
$$\sum_{k = 1}^{99\\,999} R(\displaystyle\binom{100\\,000}{k}) \equiv 628\\,701\\,600\bmod 1\\,000\\,000\\,007$$
Find $$\sum_{k = 1}^{9\\,999\\,999} R(\displaystyle\binom{10\\,000\\,000}{k})$$ Give your answer modulo $1\\,000\\,000\\,007$.
# --hints--
`retractionsA()` should return `659104042`.
```js
assert.strictEqual(retractionsA(), 659104042);
```
# --seed--
## --seed-contents--
```js
function retractionsA() {
return true;
}
retractionsA();
```
# --solutions--
```js
// solution required
```