* chore: resolve bengali issues * chore: resolve french issues * chore: resolve hebrew issues * chore: resolve persian issues * chore: resolve portuguese brazilian issues * chore: resolve russian issues * chore: resolve spanish issues * chore: resolve japanese issues
2.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f52e1000cf542c510041 | Problem 450: Hypocycloid and Lattice points | 5 | 302123 | problem-450-hypocycloid-and-lattice-points |
--description--
A hypocycloid is the curve drawn by a point on a small circle rolling inside a larger circle. The parametric equations of a hypocycloid centered at the origin, and starting at the right most point is given by:
x(t) = (R - r) \cos(t) + r \cos(\frac{R - r}{r}t)
y(t) = (R - r) \sin(t) - r \sin(\frac{R - r}{r} t)
Where R
is the radius of the large circle and r
the radius of the small circle.
Let C(R, r)
be the set of distinct points with integer coordinates on the hypocycloid with radius R
and r
and for which there is a corresponding value of t
such that \sin(t)
and \cos(t)
are rational numbers.
Let S(R, r) = \sum\_{(x,y) \in C(R, r)} |x| + |y|
be the sum of the absolute values of the x
and y
coordinates of the points in C(R, r)
.
Let T(N) = \sum_{R = 3}^N \sum_{r=1}^{\left\lfloor \frac{R - 1}{2} \right\rfloor} S(R, r)
be the sum of S(R, r)
for R
and r
positive integers, R\leq N
and 2r < R
.
You are given:
$$\begin{align} C(3, 1) = & \{(3, 0), (-1, 2), (-1,0), (-1,-2)\} \\ C(2500, 1000) = & \{(2500, 0), (772, 2376), (772, -2376), (516, 1792), (516, -1792), (500, 0), (68, 504), \\ &(68, -504),(-1356, 1088), (-1356, -1088), (-1500, 1000), (-1500, -1000)\} \end{align}$$
Note: (-625, 0) is not an element of C(2500, 1000)
because \sin(t)
is not a rational number for the corresponding values of t
.
S(3, 1) = (|3| + |0|) + (|-1| + |2|) + (|-1| + |0|) + (|-1| + |-2|) = 10
T(3) = 10
; T(10) = 524
; T(100) = 580\\,442
; T({10}^3) = 583\\,108\\,600
.
Find T({10}^6)
.
--hints--
hypocycloidAndLatticePoints()
should return 583333163984220900
.
assert.strictEqual(hypocycloidAndLatticePoints(), 583333163984220900);
--seed--
--seed-contents--
function hypocycloidAndLatticePoints() {
return true;
}
hypocycloidAndLatticePoints();
--solutions--
// solution required