Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-46-goldbachs-other-conjecture.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

100 lines
2.0 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f39a1000cf542c50fead
title: 'Problem 46: Goldbach''s other conjecture'
challengeType: 5
forumTopicId: 302134
dashedName: problem-46-goldbachs-other-conjecture
---
# --description--
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.
<div style='margin-left: 2em;'>
9 = 7 + 2×1<sup>2</sup><br>
15 = 7 + 2×2<sup>2</sup><br>
21 = 3 + 2×3<sup>2</sup><br>
25 = 7 + 2×3<sup>2</sup><br>
27 = 19 + 2×2<sup>2</sup><br>
33 = 31 + 2×1<sup>2</sup>
</div>
It turns out that the conjecture was false.
What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?
# --hints--
`goldbachsOtherConjecture()` should return a number.
```js
assert(typeof goldbachsOtherConjecture() === 'number');
```
`goldbachsOtherConjecture()` should return 5777.
```js
assert.strictEqual(goldbachsOtherConjecture(), 5777);
```
# --seed--
## --seed-contents--
```js
function goldbachsOtherConjecture() {
return true;
}
goldbachsOtherConjecture();
```
# --solutions--
```js
function goldbachsOtherConjecture() { function isPrime(num) {
if (num < 2) {
return false;
} else if (num === 2) {
return true;
}
const sqrtOfNum = Math.floor(num ** 0.5);
for (let i = 2; i <= sqrtOfNum + 1; i++) {
if (num % i === 0) {
return false;
}
}
return true;
}
function isSquare(num) {
return Math.sqrt(num) % 1 === 0;
}
// construct a list of prime numbers
const primes = [];
for (let i = 2; primes.length < 1000; i++) {
if (isPrime(i)) primes.push(i);
}
let num = 3;
let answer;
while (!answer) {
num += 2;
if (!isPrime(num)) {
let found = false;
for (let primeI = 0; primeI < primes.length && !found; primeI++) {
const square = (num - primes[primeI]) / 2;
if (isSquare(square)) {
found = true;
break;
}
}
if (!found) answer = num;
}
}
return answer;
}
```