* fix: clean-up Project Euler 462-480 * fix: missing image extension * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f53e1000cf542c510051 | Problem 466: Distinct terms in a multiplication table | 5 | 302141 | problem-466-distinct-terms-in-a-multiplication-table |
--description--
Let P(m,n)
be the number of distinct terms in an m×n
multiplication table.
For example, a 3×4 multiplication table looks like this:
$$\begin{array}{c} × & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ \mathbf{1} & 1 & 2 & 3 & 4 \\ \mathbf{2} & 2 & 4 & 6 & 8 \\ \mathbf{3} & 3 & 6 & 9 & 12 \end{array}$$
There are 8 distinct terms {1, 2, 3, 4, 6, 8, 9, 12}, therefore P(3, 4) = 8
.
You are given that:
$$\begin{align} & P(64, 64) = 1\,263, \\ & P(12, 345) = 1\,998, \text{ and} \\ & P(32, {10}^{15}) = 13\,826\,382\,602\,124\,302. \\ \end{align}$$
Find P(64, {10}^{16})
.
--hints--
multiplicationTable()
should return 258381958195474750
.
assert.strictEqual(multiplicationTable(), 258381958195474750);
--seed--
--seed-contents--
function multiplicationTable() {
return true;
}
multiplicationTable();
--solutions--
// solution required