Files
gikf 397a9f0c3e fix(curriculum): clean-up Project Euler 462-480 (#43069)
* fix: clean-up Project Euler 462-480

* fix: missing image extension

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-30 08:32:21 -07:00

47 lines
1.0 KiB
Markdown

---
id: 5900f54b1000cf542c51005d
title: 'Problem 479: Roots on the Rise'
challengeType: 5
forumTopicId: 302156
dashedName: problem-479-roots-on-the-rise
---
# --description--
Let $a_k$, $b_k$, and $c_k$ represent the three solutions (real or complex numbers) to the expression $\frac{1}{x} = {\left(\frac{k}{x} \right)}^2 (k + x^2) - kx$.
For instance, for $k = 5$, we see that $\\{a_5, b_5, c_5\\}$ is approximately $\\{5.727244, -0.363622 + 2.057397i, -0.363622 - 2.057397i\\}$.
Let $S(n) = \displaystyle\sum_{p = 1}^n \sum_{k = 1}^n {(a_k + b_k)}^p {(b_k + c_k)}^p {(c_k + a_k)}^p$ for all integers $p$, $k$ such that $1 ≤ p, k ≤ n$.
Interestingly, $S(n)$ is always an integer. For example, $S(4) = 51\\,160$.
Find $S({10}^6) \text{ modulo } 1\\,000\\,000\\,007$.
# --hints--
`rootsOnTheRise()` should return `191541795`.
```js
assert.strictEqual(rootsOnTheRise(), 191541795);
```
# --seed--
## --seed-contents--
```js
function rootsOnTheRise() {
return true;
}
rootsOnTheRise();
```
# --solutions--
```js
// solution required
```