Files
Naomi Carrigan f88b272f79 chore: migrate instructions to learn (#45568)
* chore: migrate instructions to learn

* chore: apply sem's review suggestions

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* chore: apply tom's review suggestion

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2022-04-12 09:20:56 -05:00

2.6 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5e46f8d6ac417301a38fb92d Rock Paper Scissors 10 462376 rock-paper-scissors

--description--

You will be working on this project with our Replit starter code.

We are still developing the interactive instructional part of the machine learning curriculum. For now, you will have to use other resources to learn how to pass this challenge.

--instructions--

Create a function named calculate() in mean_var_std.py that uses Numpy to output the mean, variance, standard deviation, max, min, and sum of the rows, columns, and elements in a 3 x 3 matrix.

The input of the function should be a list containing 9 digits. The function should convert the list into a 3 x 3 Numpy array, and then return a dictionary containing the mean, variance, standard deviation, max, min, and sum along both axes and for the flattened matrix.

The returned dictionary should follow this format:

{
  'mean': [axis1, axis2, flattened],
  'variance': [axis1, axis2, flattened],
  'standard deviation': [axis1, axis2, flattened],
  'max': [axis1, axis2, flattened],
  'min': [axis1, axis2, flattened],
  'sum': [axis1, axis2, flattened]
}

If a list containing less than 9 elements is passed into the function, it should raise a ValueError exception with the message: "List must contain nine numbers." The values in the returned dictionary should be lists and not Numpy arrays.

For example, calculate([0,1,2,3,4,5,6,7,8]) should return:

{
  'mean': [[3.0, 4.0, 5.0], [1.0, 4.0, 7.0], 4.0], 
  'variance': [[6.0, 6.0, 6.0], [0.6666666666666666, 0.6666666666666666, 0.6666666666666666], 6.666666666666667], 
  'standard deviation': [[2.449489742783178, 2.449489742783178, 2.449489742783178], [0.816496580927726, 0.816496580927726, 0.816496580927726], 2.581988897471611],
  'max': [[6, 7, 8], [2, 5, 8], 8],
  'min': [[0, 1, 2], [0, 3, 6], 0],
  'sum': [[9, 12, 15], [3, 12, 21], 36]
}

The unit tests for this project are in test_module.py.

Development

For development, you can use main.py to test your calculate() function. Click the "run" button and main.py will run.

Testing

We imported the tests from test_module.py to main.py for your convenience. The tests will run automatically whenever you hit the "run" button.

Submitting

Copy your project's URL and submit it below.

--hints--

It should pass all Python tests.


--solutions--

  # Python challenges don't need solutions,
  # because they would need to be tested against a full working project.
  # Please check our contributing guidelines to learn more.