Files
2022-02-28 20:22:39 +01:00

1.6 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4731000cf542c50ff85 Problema 262: Catena montuosa 5 301911 problem-262-mountain-range

--description--

La seguente equazione rappresenta la topografia continua di una regione montuosa, dando l'elevazione h in qualsiasi punto (x,$y$):

h = \left(5000 - \frac{x^2 + y^2 + xy}{200} + \frac{25(x + y)}{2}\right) \times e^{-\left|\frac{x^2 + y^2}{1\\,000\\,000} - \frac{3(x + y)}{2000} + \frac{7}{10}\right|}

Una zanzara intende volare da A(200,200) a B(1400,1400), senza lasciare l'area data da 0 ≤ x, y ≤ 1600.

A causa delle montagne, si alza prima fino a un punto A', con elevazione f. Poi, rimanendo alla stessa elevazione f, vola intorno a qualsiasi ostacolo fino a quando non arriva a un punto B' direttamente sopra B.

Per prima cosa, determina f_{min} che è l'elevazione costante minima che consente un tale viaggio da A a B, rimanendo nell'area specificata. Quindi, trova la lunghezza del percorso più breve tra A' e B', volando a quell'elevazione costante f_{min}.

Dare quella lunghezza come risposta, arrotondata al terzo decimale.

Nota: Per comodità, la funzione di elevazione mostrata sopra viene ripetuta qui sotto, in una forma adatta alla maggior parte dei linguaggi di programmazione: h=( 5000-0.005*(x*x+y*y+x*y)+12.5*(x+y) )* exp( -abs(0.000001*(x*x+y*y)-0.0015*(x+y)+0.7) ).

--hints--

mountainRange() dovrebbe restituire 2531.205.

assert.strictEqual(mountainRange(), 2531.205);

--seed--

--seed-contents--

function mountainRange() {

  return true;
}

mountainRange();

--solutions--

// solution required