53 lines
1.0 KiB
Markdown
53 lines
1.0 KiB
Markdown
---
|
||
id: 5900f4d61000cf542c50ffe9
|
||
title: 'Problema 362: Fattori senza quadrato'
|
||
challengeType: 5
|
||
forumTopicId: 302023
|
||
dashedName: problem-362-squarefree-factors
|
||
---
|
||
|
||
# --description--
|
||
|
||
Considera il numero 54.
|
||
|
||
54 può essere fattorizzato in 7 modi distinti in uno o più fattori superiori a 1:
|
||
|
||
$$54, 2 × 27, 3 × 18, 6 × 9, 3 × 3 × 6, 2 × 3 × 9 \text{ and } 2 × 3 × 3 × 3$$
|
||
|
||
Se abbiamo bisogno che i fattori siano tutti privi di quadrati, rimangono solo due modi: $3 × 3 × 6$ e $2 × 3 × 3 × 3$.
|
||
|
||
Chiamiamo $Fsf(n)$ il numero di modi in cui $n$ può essere fattorizzato senza quadrati più grandi di 1, quindi $Fsf(54) = 2$.
|
||
|
||
Sia $S(n)$ $\sum Fsf(k)$ per $k = 2$ a $n$.
|
||
|
||
$S(100) = 193$.
|
||
|
||
Trova $S(10\\,000\\,000\\,000)$.
|
||
|
||
# --hints--
|
||
|
||
`squarefreeFactors()` dovrebbe restituire `457895958010`.
|
||
|
||
```js
|
||
assert.strictEqual(squarefreeFactors(), 457895958010);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function squarefreeFactors() {
|
||
|
||
return true;
|
||
}
|
||
|
||
squarefreeFactors();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|