106 lines
2.7 KiB
Markdown
106 lines
2.7 KiB
Markdown
---
|
||
id: 5900f3a61000cf542c50feb9
|
||
title: 'Problema 58: Primi a spirale'
|
||
challengeType: 5
|
||
forumTopicId: 302169
|
||
dashedName: problem-58-spiral-primes
|
||
---
|
||
|
||
# --description--
|
||
|
||
Partendo da 1 e a spirale antioraria nel modo seguente, si forma una spirale quadrata con lunghezza laterale 7.
|
||
|
||
<div style='text-align: center;'>
|
||
<strong><span style='color: red;'>37</span></strong> 36 35 34 33 32 <strong><span style='color: red;'>31</span></strong><br>
|
||
38 <strong><span style='color: red;'>17</span></strong> 16 15 14 <strong><span style='color: red;'>13</span></strong> 30<br>
|
||
39 18 <strong><span style='color: red;'>5</span></strong> 4 <strong><span style='color: red;'>3</span></strong> 12 29<br>
|
||
40 19 6 1 2 11 28<br>
|
||
41 20 <strong><span style='color: red;'>7</span></strong> 8 9 10 27<br>
|
||
42 21 22 23 24 25 26<br>
|
||
<strong><span style='color: red;'>43</span></strong> 44 45 46 47 48 49<br>
|
||
</div>
|
||
|
||
È interessante notare che i quadrati dispari si trovano lungo la diagonale in basso a destra, ma ciò che è più interessante è che 8 dei 13 numeri che si trovano lungo entrambe le diagonali sono primi, cioè un rapporto di 8/13 ≈ 62%.
|
||
|
||
Se un nuovo strato completo è avvolto intorno alla spirale sopra, verrà formata una spirale quadrata con lunghezza laterale 9. Se si prosegue con questo processo, qual è la lunghezza laterale della spirale quadrata per la quale la percentuale di primi lungo entrambe le diagonali cade prima al di sotto del `percent`?
|
||
|
||
# --hints--
|
||
|
||
`spiralPrimes(50)` dovrebbe restituire un numero.
|
||
|
||
```js
|
||
assert(typeof spiralPrimes(50) === 'number');
|
||
```
|
||
|
||
`spiralPrimes(50)` dovrebbe restituire `11`.
|
||
|
||
```js
|
||
assert.strictEqual(spiralPrimes(50), 11);
|
||
```
|
||
|
||
`spiralPrimes(15)` dovrebbe restituire `981`.
|
||
|
||
```js
|
||
assert.strictEqual(spiralPrimes(15), 981);
|
||
```
|
||
|
||
`spiralPrimes(10)` dovrebbe restituire `26241`.
|
||
|
||
```js
|
||
assert.strictEqual(spiralPrimes(10), 26241);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function spiralPrimes(percent) {
|
||
|
||
return true;
|
||
}
|
||
|
||
spiralPrimes(50);
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
function spiralPrimes(percent) {
|
||
function isPrime(n) {
|
||
if (n <= 3) {
|
||
return n > 1;
|
||
} else if (n % 2 === 0 || n % 3 === 0) {
|
||
return false;
|
||
}
|
||
|
||
for (let i = 5; i * i <= n; i += 6) {
|
||
if (n % i === 0 || n % (i + 2) === 0) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
let totalCount = 1;
|
||
let primesCount = 0;
|
||
let curNumber = 1;
|
||
let curSideLength = 1;
|
||
let ratio = 1;
|
||
const wantedRatio = percent / 100;
|
||
|
||
while (ratio >= wantedRatio) {
|
||
curSideLength += 2;
|
||
for (let i = 0; i < 4; i++) {
|
||
curNumber += curSideLength - 1;
|
||
totalCount++;
|
||
if (i !== 3 && isPrime(curNumber)) {
|
||
primesCount++;
|
||
}
|
||
}
|
||
ratio = primesCount / totalCount;
|
||
}
|
||
return curSideLength;
|
||
}
|
||
```
|