2.9 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f3b61000cf542c50fec9 | Problema 74: catene fattoriali di cifre | 5 | 302187 | problem-74-digit-factorial-chains |
--description--
Il numero 145 è noto per la proprietà che la somma del fattoriale delle sue cifre è pari a 145:
1! + 4! + 5! = 1 + 24 + 120 = 145
Forse meno noto è 169, in quanto produce la più lunga catena di numeri che riportano a 169; si scopre che esistono solo tre di questi loop:
$$\begin{align} &169 → 363601 → 1454 → 169\\ &871 → 45361 → 871\\ &872 → 45362 → 872\\ \end{align}$$
Non è difficile dimostrare che OGNI numero di partenza alla fine entrerà in un ciclo. Per esempio,
$$\begin{align} &69 → 363600 → 1454 → 169 → 363601\ (→ 1454)\\ &78 → 45360 → 871 → 45361\ (→ 871)\\ &540 → 145\ (→ 145)\\ \end{align}$$
Partire con 69 produce una catena di cinque termini non ripetibili, ma la più lunga catena non ripetibile con un numero iniziale inferiore a un milione è di sessanta termini.
Quante catene, con un numero iniziale inferiore a n
, contengono esattamente sessanta termini non ripetibili?
--hints--
digitFactorialChains(2000)
dovrebbe restituire un numero.
assert(typeof digitFactorialChains(2000) === 'number');
digitFactorialChains(2000)
dovrebbe restituire 6
.
assert.strictEqual(digitFactorialChains(2000), 6);
digitFactorialChains(100000)
dovrebbe restituire 42
.
assert.strictEqual(digitFactorialChains(100000), 42);
digitFactorialChains(500000)
dovrebbe restituire 282
.
assert.strictEqual(digitFactorialChains(500000), 282);
digitFactorialChains(1000000)
dovrebbe restituire 402
.
assert.strictEqual(digitFactorialChains(1000000), 402);
--seed--
--seed-contents--
function digitFactorialChains(n) {
return true;
}
digitFactorialChains(2000);
--solutions--
function digitFactorialChains(n) {
function sumDigitsFactorials(number) {
let sum = 0;
while (number > 0) {
sum += factorials[number % 10];
number = Math.floor(number / 10);
}
return sum;
}
const factorials = [1];
for (let i = 1; i < 10; i++) {
factorials.push(factorials[factorials.length - 1] * i);
}
const sequences = {
169: 3,
871: 2,
872: 2,
1454: 3,
45362: 2,
45461: 2,
3693601: 3
};
let result = 0;
for (let i = 2; i < n; i++) {
let curNum = i;
let chainLength = 0;
const curSequence = [];
while (curSequence.indexOf(curNum) === -1) {
curSequence.push(curNum);
curNum = sumDigitsFactorials(curNum);
chainLength++;
if (sequences.hasOwnProperty(curNum) > 0) {
chainLength += sequences[curNum];
break;
}
}
if (chainLength === 60) {
result++;
}
for (let j = 1; j < curSequence.length; j++) {
sequences[curSequence[j]] = chainLength - j;
}
}
return result;
}