Files
2022-02-10 10:07:28 -08:00

1.8 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
599d15309e88c813a40baf58 Entropia 5 302254 entropy

--description--

Calcola l'entropia H di Shannon di una data stringa.

Data la variabile casuale discreta X che è una stringa di N "simboli" (caratteri totali) composta da n caratteri diversi (n=2 per il binario), l'entropia di Shannon di X in bit/simbolo è:

H_2(X) = -\\sum\_{i=1}^n \\frac{count_i}{N} \\log_2 \\left(\\frac{count_i}{N}\\right)

dove count_i è il conteggio dei caratteri n_i.

--hints--

entropy dovrebbe essere una funzione.

assert(typeof entropy === 'function');

entropy("0") dovrebbe restituire 0

assert.equal(entropy('0'), 0);

entropy("01") dovrebbe restituire 1

assert.equal(entropy('01'), 1);

entropy("0123") dovrebbe restituire 2

assert.equal(entropy('0123'), 2);

entropy("01234567") dovrebbe restituire 3

assert.equal(entropy('01234567'), 3);

entropy("0123456789abcdef") dovrebbe restituire 4

assert.equal(entropy('0123456789abcdef'), 4);

entropy("1223334444") dovrebbe restituire 1.8464393446710154

assert.equal(entropy('1223334444'), 1.8464393446710154);

--seed--

--seed-contents--

function entropy(s) {

}

--solutions--

function entropy(s) {
    // Create a dictionary of character frequencies and iterate over it.
  function process(s, evaluator) {
    let h = Object.create(null),
      k;
    s.split('').forEach(c => {
      h[c] && h[c]++ || (h[c] = 1); });
    if (evaluator) for (k in h) evaluator(k, h[k]);
    return h;
  }
    // Measure the entropy of a string in bits per symbol.

  let sum = 0,
    len = s.length;
  process(s, (k, f) => {
    const p = f / len;
    sum -= p * Math.log(p) / Math.log(2);
  });
  return sum;
}