1.1 KiB
1.1 KiB
id, title, challengeType, videoId, bilibiliIds, dashedName
id | title | challengeType | videoId | bilibiliIds | dashedName | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5e8f2f13c4cdbe86b5c72da1 | Elaborazione del linguaggio naturale con RNN: costruzione del modello | 11 | 32WBFS7lfsw |
|
natural-language-processing-with-rnns-building-the-model |
--question--
--text--
Riempi gli spazi vuoti per completare la funzione build_model
qui sotto:
def build_mode(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size,
embedding_dim,
batch_input_shape=[batch_size, None]),
tf.keras.layers.__A__(rnn_units,
return_sequences=__B__,
recurrent_initializer='glorot_uniform),
tf.keras.layers.Dense(__C__)
])
__D__
--answers--
A: ELU
B: True
C: vocab_size
D: return model
A: LSTM
B: False
C: batch_size
D: return model
A: LSTM
B: True
C: vocab_size
D: return model
--video-solution--
3