Files
2022-04-05 23:36:59 +05:30

60 lines
1.7 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f3f51000cf542c50ff08
title: 'Problema 137: Pepitas de ouro de Fibonacci'
challengeType: 5
forumTopicId: 301765
dashedName: problem-137-fibonacci-golden-nuggets
---
# --description--
Considere a série polinomial infinita $A_{F}(x) = xF_1 + x^2F_2 + x^3F_3 + \ldots$, onde $F_k$ é o $k$º termo na sequência de Fibonacci: $1, 1, 2, 3, 5, 8, \ldots$; ou seja, $F_k = F_{k 1} + F_{k 2}, F_1 = 1$ e $F_2 = 1$.
Para este problema, estaremos interessados em valores de $x$ para os quais $A_{F}(x)$ é um número inteiro positivo.
Surpreendentemente,
$$\begin{align} A_F(\frac{1}{2}) & = (\frac{1}{2}) × 1 + {(\frac{1}{2})}^2 × 1 + {(\frac{1}{2})}^3 × 2 + {(\frac{1}{2})}^4 × 3 + {(\frac{1}{2})}^5 × 5 + \cdots \\\\
& = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{5}{32} + \cdots \\\\ & = 2 \end{align}$$
Os valores correspondentes de $x$ para os primeiros cinco números naturais são mostrados abaixo.
| $x$ | $A_F(x)$ |
| --------------------------- | -------- |
| $\sqrt{2} 1$ | $1$ |
| $\frac{1}{2}$ | $2$ |
| $\frac{\sqrt{13} 2}{3}$ | $3$ |
| $\frac{\sqrt{89} 5}{8}$ | $4$ |
| $\frac{\sqrt{34} 3}{5}$ | $5$ |
Vamos chamar $A_F(x)$ de pepita de ouro se $x$ for racional, porque eles se tornam cada vez mais raros (por exemplo, a 10ª pepita de ouro é 74049690).
Encontre a 15ª pepita dourada.
# --hints--
`goldenNugget()` deve retornar `1120149658760`.
```js
assert.strictEqual(goldenNugget(), 1120149658760);
```
# --seed--
## --seed-contents--
```js
function goldenNugget() {
return true;
}
goldenNugget();
```
# --solutions--
```js
// solution required
```