Files
2022-04-05 23:36:59 +05:30

49 lines
1.2 KiB
Markdown

---
id: 5900f4711000cf542c50ff84
title: 'Problema 261: Soma dos quadrados pivotais'
challengeType: 5
forumTopicId: 301910
dashedName: problem-261-pivotal-square-sums
---
# --description--
Vamos chamar um número inteiro positivo $k$ de um quadrado pivotal se houver um par de números inteiros $m > 0$ e $n ≥ k$, tal que a soma dos quadrados consecutivos ($m + 1$) até $k$ é igual a soma dos $m$ quadrados consecutivos de ($n + 1$) em:
$${(k - m)}^2 + \ldots + k^2 = {(n + 1)}^2 + \ldots + {(n + m)}^2$$
Alguns quadrados pivotais pequenos são
$$\begin{align} & \mathbf{4}: 3^2 + \mathbf{4}^2 = 5^2 \\\\
& \mathbf{21}: {20}^2 + \mathbf{21}^2 = {29}^2 \\\\ & \mathbf{24}: {21}^2 + {22}^2 + {23}^2 + \mathbf{24}^2 = {25}^2 + {26}^2 + {27}^2 \\\\
& \mathbf{110}: {108}^2 + {109}^2 + \mathbf{110}^2 = {133}^2 + {134}^2 \\\\ \end{align}$$
Encontre a soma de todos os quadrados pivotais distintos $≤ {10}^{10}$.
# --hints--
`pivotalSquareSums()` deve retornar `238890850232021`.
```js
assert.strictEqual(pivotalSquareSums(), 238890850232021);
```
# --seed--
## --seed-contents--
```js
function pivotalSquareSums() {
return true;
}
pivotalSquareSums();
```
# --solutions--
```js
// solution required
```