1.6 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4dd1000cf542c50ffef | Problema 368: Uma série semelhante à de Kempner | 5 | 302029 | problem-368-a-kempner-like-series |
--description--
A série harmônica 1 + \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \ldots
é conhecido por ser divergente.
No entanto, se omitirmos desta série todos os termos em que o denominador tem um 9, a série converge consideravelmente para aproximadamente 22,9206766193. Esta série harmônica modificada é chamada de série de Kempner.
Consideremos agora outra série harmônica modificada, omitindo da série harmônica todos os termos em que o denominador tem 3 ou mais algarismos iguais consecutivos. Pode-se verificar que, dos primeiros 1200 termos da série harmônica, apenas 20 termos serão omitidos.
Estes 20 termos omitidos são:
$$\dfrac{1}{111}, \dfrac{1}{222}, \dfrac{1}{333}, \dfrac{1}{444}, \dfrac{1}{555}, \dfrac{1}{666}, \dfrac{1}{777}, \dfrac{1}{888}, \dfrac{1}{999}, \dfrac{1}{1000}, \dfrac{1}{1110}, \\ \dfrac{1}{1111}, \dfrac{1}{1112}, \dfrac{1}{1113}, \dfrac{1}{1114}, \dfrac{1}{1115}, \dfrac{1}{1116}, \dfrac{1}{1117}, \dfrac{1}{1118}, \dfrac{1}{1119}$$
Esta série também converge.
Encontre o valor para o qual a série converge. Dê sua resposta arredondada para 10 casas depois da vírgula.
--hints--
kempnerLikeSeries()
deve retornar 253.6135092068
.
assert.strictEqual(kempnerLikeSeries(), 253.6135092068);
--seed--
--seed-contents--
function kempnerLikeSeries() {
return true;
}
kempnerLikeSeries();
--solutions--
// solution required