Files

93 lines
2.0 KiB
Markdown

---
id: 59637c4d89f6786115efd814
title: Sequência Q de Hofstadter
challengeType: 5
forumTopicId: 302287
dashedName: hofstadter-q-sequence
---
# --description--
A [sequência Q de Hofstadter](https://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Q_sequence "wp: Hofstadter_sequence#Hofstadter_Q_sequence") é definida como:
$Q(1)=Q(2)=1, \\\\ Q(n)=Q\\big(n-Q(n-1)\\big)+Q\\big(n-Q(n-2)), \\quad n>2.$
Ela é definida como a [sequência de Fibonacci](https://rosettacode.org/wiki/Fibonacci sequence "Fibonacci sequence"), mas enquanto o próximo termo na sequência de Fibonacci é a soma dos dois termos anteriores, na sequência Q, os dois termos anteriores dizer a distância a retornar na sequência Q para encontrar os dois números somados para fazer o próximo termo da sequência.
# --instructions--
Implementar a equação da sequência Q de Hofstadter como uma função. A função deve aceitar o número, `n`, e retornar um inteiro.
# --hints--
`hofstadterQ` deve ser uma função.
```js
assert(typeof hofstadterQ === 'function');
```
`hofstadterQ()` deve retornar um `integer`
```js
assert(Number.isInteger(hofstadterQ(1000)));
```
`hofstadterQ(1000)` deve retornar `502`
```js
assert.equal(hofstadterQ(testCase[0]), res[0]);
```
`hofstadterQ(1500)` deve retornar `755`
```js
assert.equal(hofstadterQ(testCase[1]), res[1]);
```
`hofstadterQ(2000)` deve retornar `1005`
```js
assert.equal(hofstadterQ(testCase[2]), res[2]);
```
`hofstadterQ(2500)` deve retornar `1261`
```js
assert.equal(hofstadterQ(testCase[3]), res[3]);
```
# --seed--
## --after-user-code--
```js
const testCase = [1000, 1500, 2000, 2500];
const res = [502, 755, 1005, 1261];
```
## --seed-contents--
```js
function hofstadterQ(n) {
return n;
}
```
# --solutions--
```js
function hofstadterQ (n) {
const memo = [1, 1, 1];
const Q = function (i) {
let result = memo[i];
if (typeof result !== 'number') {
result = Q(i - Q(i - 1)) + Q(i - Q(i - 2));
memo[i] = result;
}
return result;
};
return Q(n);
}
```