231 lines
4.9 KiB
Markdown
231 lines
4.9 KiB
Markdown
---
|
||
id: 5a23c84252665b21eecc7e77
|
||
title: Метод Гауса
|
||
challengeType: 5
|
||
forumTopicId: 302272
|
||
dashedName: gaussian-elimination
|
||
---
|
||
|
||
# --description--
|
||
|
||
Напишіть функцію для вирішення \\(Ax = b\\), використовуючи матод Гауса, а тоді зворотну підстановку.
|
||
|
||
\\(A\\) є матрицею\\(n \\times n\\). Крім того, \\(x\\) та \\(b\\) є \\(n\\) за 1 вектором.
|
||
|
||
Для більшої точності використовуйте вибір ведучого елемента і масштабування.
|
||
|
||
# --hints--
|
||
|
||
`gaussianElimination` має бути функцією.
|
||
|
||
```js
|
||
assert(typeof gaussianElimination == 'function');
|
||
```
|
||
|
||
`gaussianElimination([[1,1],[1,-1]], [5,1])` має повернути масив.
|
||
|
||
```js
|
||
assert(
|
||
Array.isArray(
|
||
gaussianElimination(
|
||
[
|
||
[1, 1],
|
||
[1, -1]
|
||
],
|
||
[5, 1]
|
||
)
|
||
)
|
||
);
|
||
```
|
||
|
||
`gaussianElimination([[1,1],[1,-1]], [5,1])` має повернути `[ 3, 2 ]`.
|
||
|
||
```js
|
||
assert.deepEqual(
|
||
gaussianElimination(
|
||
[
|
||
[1, 1],
|
||
[1, -1]
|
||
],
|
||
[5, 1]
|
||
),
|
||
[3, 2]
|
||
);
|
||
```
|
||
|
||
`gaussianElimination([[2,3],[2,1]] , [8,4])` має повернути `[ 1, 2 ]`.
|
||
|
||
```js
|
||
assert.deepEqual(
|
||
gaussianElimination(
|
||
[
|
||
[2, 3],
|
||
[2, 1]
|
||
],
|
||
[8, 4]
|
||
),
|
||
[1, 2]
|
||
);
|
||
```
|
||
|
||
`gaussianElimination([[1,3],[5,-2]], [14,19])` має повернути `[ 5, 3 ]`.
|
||
|
||
```js
|
||
assert.deepEqual(
|
||
gaussianElimination(
|
||
[
|
||
[1, 3],
|
||
[5, -2]
|
||
],
|
||
[14, 19]
|
||
),
|
||
[5, 3]
|
||
);
|
||
```
|
||
|
||
`gaussianElimination([[1,1],[5,-1]] , [10,14])` має повернути `[ 4, 6 ]`.
|
||
|
||
```js
|
||
assert.deepEqual(
|
||
gaussianElimination(
|
||
[
|
||
[1, 1],
|
||
[5, -1]
|
||
],
|
||
[10, 14]
|
||
),
|
||
[4, 6]
|
||
);
|
||
```
|
||
|
||
`gaussianElimination([[1,2,3],[4,5,6],[7,8,8]] , [6,15,23])` має повернути `[ 1, 1, 1 ]`.
|
||
|
||
```js
|
||
assert.deepEqual(
|
||
gaussianElimination(
|
||
[
|
||
[1, 2, 3],
|
||
[4, 5, 6],
|
||
[7, 8, 8]
|
||
],
|
||
[6, 15, 23]
|
||
),
|
||
[1, 1, 1]
|
||
);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function gaussianElimination(A,b) {
|
||
|
||
}
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
function gaussianElimination(A, b) {
|
||
// Lower Upper Decomposition
|
||
function ludcmp(A) {
|
||
// A is a matrix that we want to decompose into Lower and Upper matrices.
|
||
var d = true
|
||
var n = A.length
|
||
var idx = new Array(n) // Output vector with row permutations from partial pivoting
|
||
var vv = new Array(n) // Scaling information
|
||
|
||
for (var i=0; i<n; i++) {
|
||
var max = 0
|
||
for (var j=0; j<n; j++) {
|
||
var temp = Math.abs(A[i][j])
|
||
if (temp > max) max = temp
|
||
}
|
||
if (max == 0) return // Singular Matrix!
|
||
vv[i] = 1 / max // Scaling
|
||
}
|
||
|
||
var Acpy = new Array(n)
|
||
for (var i=0; i<n; i++) {
|
||
var Ai = A[i]
|
||
let Acpyi = new Array(Ai.length)
|
||
for (j=0; j<Ai.length; j+=1) Acpyi[j] = Ai[j]
|
||
Acpy[i] = Acpyi
|
||
}
|
||
A = Acpy
|
||
|
||
var tiny = 1e-20 // in case pivot element is zero
|
||
for (var i=0; ; i++) {
|
||
for (var j=0; j<i; j++) {
|
||
var sum = A[j][i]
|
||
for (var k=0; k<j; k++) sum -= A[j][k] * A[k][i];
|
||
A[j][i] = sum
|
||
}
|
||
var jmax = 0
|
||
var max = 0;
|
||
for (var j=i; j<n; j++) {
|
||
var sum = A[j][i]
|
||
for (var k=0; k<i; k++) sum -= A[j][k] * A[k][i];
|
||
A[j][i] = sum
|
||
var temp = vv[j] * Math.abs(sum)
|
||
if (temp >= max) {
|
||
max = temp
|
||
jmax = j
|
||
}
|
||
}
|
||
if (i <= jmax) {
|
||
for (var j=0; j<n; j++) {
|
||
var temp = A[jmax][j]
|
||
A[jmax][j] = A[i][j]
|
||
A[i][j] = temp
|
||
}
|
||
d = !d;
|
||
vv[jmax] = vv[i]
|
||
}
|
||
idx[i] = jmax;
|
||
if (i == n-1) break;
|
||
var temp = A[i][i]
|
||
if (temp == 0) A[i][i] = temp = tiny
|
||
temp = 1 / temp
|
||
for (var j=i+1; j<n; j++) A[j][i] *= temp
|
||
}
|
||
return {A:A, idx:idx, d:d}
|
||
}
|
||
|
||
// Lower Upper Back Substitution
|
||
function lubksb(lu, b) {
|
||
// solves the set of n linear equations A*x = b.
|
||
// lu is the object containing A, idx and d as determined by the routine ludcmp.
|
||
var A = lu.A
|
||
var idx = lu.idx
|
||
var n = idx.length
|
||
|
||
var bcpy = new Array(n)
|
||
for (var i=0; i<b.length; i+=1) bcpy[i] = b[i]
|
||
b = bcpy
|
||
|
||
for (var ii=-1, i=0; i<n; i++) {
|
||
var ix = idx[i]
|
||
var sum = b[ix]
|
||
b[ix] = b[i]
|
||
if (ii > -1)
|
||
for (var j=ii; j<i; j++) sum -= A[i][j] * b[j]
|
||
else if (sum)
|
||
ii = i
|
||
b[i] = sum
|
||
}
|
||
for (var i=n-1; i>=0; i--) {
|
||
var sum = b[i]
|
||
for (var j=i+1; j<n; j++) sum -= A[i][j] * b[j]
|
||
b[i] = sum / A[i][i]
|
||
}
|
||
return b // solution vector x
|
||
}
|
||
|
||
var lu = ludcmp(A)
|
||
if (lu === undefined) return // Singular Matrix!
|
||
return lubksb(lu, b)
|
||
}
|
||
```
|