966 B
966 B
id, title, challengeType, videoUrl
id | title | challengeType | videoUrl |
---|---|---|---|
5900f4f81000cf542c51000b | 问题396:弱Goodstein序列 | 5 |
--description--
对于任何正整数n,第n个弱Goodstein序列{g1,g2,g3,...}定义为:g1 = n,对于k> 1,gk是通过在基k中写gk-1获得的,将其解释为a基数k + 1,减去1。
当gk变为0时,序列终止。
例如,第6个弱Goodstein序列是{6,11,17,25,...}:g1 = 6. g2 = 11,因为6 = 1102,1103 = 12,12 - 1 = 11. g3 = 17 11 = 1023,1024 = 18,18-1 = 17.g4 = 25,因为17 = 1014,1015 = 26,26-1 = 25。
等等。
可以证明,每个弱的Goodstein序列都会终止。
设G(n)为第n个弱Goodstein序列中的非零元素的数量。可以证实G(2)= 3,G(4)= 21和G(6)= 381.还可以证实ΣG(n)= 2517,1≤n<8。
找到ΣG(n)的最后9位数,1≤n<16。
--hints--
euler396()
应该返回173214653。
assert.strictEqual(euler396(), 173214653);