1.8 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.8 KiB
		
	
	
	
	
	
	
	
id, challengeType, title, videoUrl, localeTitle
| id | challengeType | title | videoUrl | localeTitle | 
|---|---|---|---|---|
| 5900f3a11000cf542c50feb4 | 5 | Problem 53: Combinatoric selections | 问题53:组合选择 | 
Description
nCr = n!r!(n-r)! ,其中r≤n,n! = n×(n-1)×...×3×2×1和0! = 1。
直到n = 23,一个值超过一百万:23C10 = 1144066.对于1≤n≤100,nCr的多少,不一定是不同的值大于一百万?
Instructions
Tests
tests:
  - text: <code>combinatoricSelections(1000)</code>应返回4626。
    testString: 'assert.strictEqual(combinatoricSelections(1000), 4626, "<code>combinatoricSelections(1000)</code> should return 4626.");'
  - text: <code>combinatoricSelections(10000)</code>应该返回4431。
    testString: 'assert.strictEqual(combinatoricSelections(10000), 4431, "<code>combinatoricSelections(10000)</code> should return 4431.");'
  - text: <code>combinatoricSelections(100000)</code>应返回4255。
    testString: 'assert.strictEqual(combinatoricSelections(100000), 4255, "<code>combinatoricSelections(100000)</code> should return 4255.");'
  - text: <code>combinatoricSelections(1000000)</code>应该返回4075。
    testString: 'assert.strictEqual(combinatoricSelections(1000000), 4075, "<code>combinatoricSelections(1000000)</code> should return 4075.");'
Challenge Seed
function combinatoricSelections(limit) {
  // Good luck!
  return 1;
}
combinatoricSelections(1000000);
Solution
// solution required