45 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
id: 5900f3d51000cf542c50fee6
 | 
						||
title: 'Problem 104: Pandigital Fibonacci ends'
 | 
						||
challengeType: 5
 | 
						||
forumTopicId: 301728
 | 
						||
dashedName: problem-104-pandigital-fibonacci-ends
 | 
						||
---
 | 
						||
 | 
						||
# --description--
 | 
						||
 | 
						||
The Fibonacci sequence is defined by the recurrence relation:
 | 
						||
 | 
						||
$F_n = F_{n − 1} + F_{n − 2}$, where $F_1 = 1$ and $F_2 = 1$
 | 
						||
 | 
						||
It turns out that $F_{541}$, which contains 113 digits, is the first Fibonacci number for which the last nine digits are 1 - 9 pandigital (contain all the digits 1 to 9, but not necessarily in order). And $F_{2749}$, which contains 575 digits, is the first Fibonacci number for which the first nine digits are 1 - 9 pandigital.
 | 
						||
 | 
						||
Given that $F_k$ is the first Fibonacci number for which the first nine digits AND the last nine digits are 1 - 9 pandigital, find `k`.
 | 
						||
 | 
						||
# --hints--
 | 
						||
 | 
						||
`pandigitalFibonacciEnds()` should return `329468`.
 | 
						||
 | 
						||
```js
 | 
						||
assert.strictEqual(pandigitalFibonacciEnds(), 329468);
 | 
						||
```
 | 
						||
 | 
						||
# --seed--
 | 
						||
 | 
						||
## --seed-contents--
 | 
						||
 | 
						||
```js
 | 
						||
function pandigitalFibonacciEnds() {
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
pandigitalFibonacciEnds();
 | 
						||
```
 | 
						||
 | 
						||
# --solutions--
 | 
						||
 | 
						||
```js
 | 
						||
// solution required
 | 
						||
```
 |