55 lines
		
	
	
		
			966 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			966 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
id: 5900f4b71000cf542c50ffc9
 | 
						||
title: 'Problem 330: Euler''s Number'
 | 
						||
challengeType: 5
 | 
						||
forumTopicId: 301988
 | 
						||
dashedName: problem-330-eulers-number
 | 
						||
---
 | 
						||
 | 
						||
# --description--
 | 
						||
 | 
						||
An infinite sequence of real numbers a(n) is defined for all integers n as follows:
 | 
						||
 | 
						||
<!-- TODO Use MathJax and re-write from projecteuler.net -->
 | 
						||
 | 
						||
For example,a(0) = 11! + 12! + 13! + ... = e − 1 a(1) = e − 11! + 12! + 13! + ... = 2e − 3 a(2) = 2e − 31! + e − 12! + 13! + ... = 72 e − 6
 | 
						||
 | 
						||
with e = 2.7182818... being Euler's constant.
 | 
						||
 | 
						||
It can be shown that a(n) is of the form
 | 
						||
 | 
						||
A(n) e + B(n)n! for integers A(n) and B(n).
 | 
						||
 | 
						||
For example a(10) =
 | 
						||
 | 
						||
328161643 e − 65269448610!.
 | 
						||
 | 
						||
Find A(109) + B(109) and give your answer mod 77 777 777.
 | 
						||
 | 
						||
# --hints--
 | 
						||
 | 
						||
`euler330()` should return 15955822.
 | 
						||
 | 
						||
```js
 | 
						||
assert.strictEqual(euler330(), 15955822);
 | 
						||
```
 | 
						||
 | 
						||
# --seed--
 | 
						||
 | 
						||
## --seed-contents--
 | 
						||
 | 
						||
```js
 | 
						||
function euler330() {
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
euler330();
 | 
						||
```
 | 
						||
 | 
						||
# --solutions--
 | 
						||
 | 
						||
```js
 | 
						||
// solution required
 | 
						||
```
 |