119 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
id: 5900f3b21000cf542c50fec5
 | 
						|
title: 'Problem 70: Totient permutation'
 | 
						|
challengeType: 5
 | 
						|
forumTopicId: 302183
 | 
						|
dashedName: problem-70-totient-permutation
 | 
						|
---
 | 
						|
 | 
						|
# --description--
 | 
						|
 | 
						|
Euler's Totient function, ${\phi}(n)$ (sometimes called the phi function), is used to determine the number of positive numbers less than or equal to `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, ${\phi}(9) = 6$. The number 1 is considered to be relatively prime to every positive number, so ${\phi}(1) = 1$.
 | 
						|
 | 
						|
Interestingly, ${\phi}(87109) = 79180$, and it can be seen that 87109 is a permutation of 79180.
 | 
						|
 | 
						|
Find the value of `n`, 1 < `n` < `limit`, for which ${\phi}(n)$ is a permutation of `n` and the ratio $\displaystyle\frac{n}{{\phi}(n)}$ produces a minimum.
 | 
						|
 | 
						|
# --hints--
 | 
						|
 | 
						|
`totientPermutation(10000)` should return a number.
 | 
						|
 | 
						|
```js
 | 
						|
assert(typeof totientPermutation(10000) === 'number');
 | 
						|
```
 | 
						|
 | 
						|
`totientPermutation(10000)` should return `4435`.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(totientPermutation(10000), 4435);
 | 
						|
```
 | 
						|
 | 
						|
`totientPermutation(100000)` should return `75841`.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(totientPermutation(100000), 75841);
 | 
						|
```
 | 
						|
 | 
						|
`totientPermutation(500000)` should return `474883`.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(totientPermutation(500000), 474883);
 | 
						|
```
 | 
						|
 | 
						|
`totientPermutation(10000000)` should return `8319823`.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(totientPermutation(10000000), 8319823);
 | 
						|
```
 | 
						|
 | 
						|
# --seed--
 | 
						|
 | 
						|
## --seed-contents--
 | 
						|
 | 
						|
```js
 | 
						|
function totientPermutation(limit) {
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
totientPermutation(10000);
 | 
						|
```
 | 
						|
 | 
						|
# --solutions--
 | 
						|
 | 
						|
```js
 | 
						|
function totientPermutation(limit) {
 | 
						|
  function getSievePrimes(max) {
 | 
						|
    const primes = [];
 | 
						|
    const primesMap = new Array(max).fill(true);
 | 
						|
    primesMap[0] = false;
 | 
						|
    primesMap[1] = false;
 | 
						|
 | 
						|
    for (let i = 2; i < max; i += 2) {
 | 
						|
      if (primesMap[i]) {
 | 
						|
        primes.push(i);
 | 
						|
        for (let j = i * i; j < max; j += i) {
 | 
						|
          primesMap[j] = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (i === 2) {
 | 
						|
        i = 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return primes;
 | 
						|
  }
 | 
						|
 | 
						|
  function sortDigits(number) {
 | 
						|
    return number.toString().split('').sort().join('');
 | 
						|
  }
 | 
						|
 | 
						|
  function isPermutation(numberA, numberB) {
 | 
						|
    return sortDigits(numberA) === sortDigits(numberB);
 | 
						|
  }
 | 
						|
 | 
						|
  const MAX_PRIME = 4000;
 | 
						|
  const primes = getSievePrimes(MAX_PRIME);
 | 
						|
 | 
						|
  let nValue = 1;
 | 
						|
  let minRatio = Infinity;
 | 
						|
 | 
						|
  for (let i = 1; i < primes.length; i++) {
 | 
						|
    for (let j = i + 1; j < primes.length; j++) {
 | 
						|
      const num = primes[i] * primes[j];
 | 
						|
      if (num > limit) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      const phi = (primes[i] - 1) * (primes[j] - 1);
 | 
						|
      const ratio = num / phi;
 | 
						|
 | 
						|
      if (minRatio > ratio && isPermutation(num, phi)) {
 | 
						|
        nValue = num;
 | 
						|
        minRatio = ratio;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nValue;
 | 
						|
}
 | 
						|
```
 |